The contribution of neuroplasticity induced in cholinergic neurons of the laterodorsal tegmental nucleus to cocaine addiction.

Katsuyuki Kaneda
{"title":"The contribution of neuroplasticity induced in cholinergic neurons of the laterodorsal tegmental nucleus to cocaine addiction.","authors":"Katsuyuki Kaneda","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Cocaine-induced neuroplasticity in brain reward circuitry consisting of the ventral tegmental area (VTA), nucleus accumbens and medial pre- frontal cortex is critical for developing cocaine addiction. Recent studies have investigated the involvement of brain areas in addition to the mesocorticolimbic circuitry in cocaine addiction. One such area is the laterodorsal tegmental nucleus (LDT). Cholinergic neurons in the LDT project to the VTA and regulate the activity of dopaminergic neurons. Using the cocaine-induced conditioned place preference (CPP) paradigm in rats, we found that the activity of LDT cholinergic neurons and cholinergic transmission-from the LDT to VTA are critical for the acquisition and expression of cocaine CPP. Moreover, ex vivo electrophysiological analyses revealed that chronic cocaine administration induces plasticity in excitatory synaptic transmission and membrane excitability of LDT cholinergic neurons. Furthermore, noradrenaline, which is released from locus coeruleus axon terminals, attenuated inhibitory synaptic transmission in LDT cholinergic neurons which were obtained from rats that had received chronic cocaine but not saline administrations. This cocaine-induced plasticity in LDT cholinergic neurons may enhance the excitability of these neurons, resulting in changes in the reward circuit activity that might be associated with the development of addicted behaviors induced by cocaine.</p>","PeriodicalId":19250,"journal":{"name":"Nihon shinkei seishin yakurigaku zasshi = Japanese journal of psychopharmacology","volume":"37 1","pages":"1-7"},"PeriodicalIF":0.0000,"publicationDate":"2017-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nihon shinkei seishin yakurigaku zasshi = Japanese journal of psychopharmacology","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Cocaine-induced neuroplasticity in brain reward circuitry consisting of the ventral tegmental area (VTA), nucleus accumbens and medial pre- frontal cortex is critical for developing cocaine addiction. Recent studies have investigated the involvement of brain areas in addition to the mesocorticolimbic circuitry in cocaine addiction. One such area is the laterodorsal tegmental nucleus (LDT). Cholinergic neurons in the LDT project to the VTA and regulate the activity of dopaminergic neurons. Using the cocaine-induced conditioned place preference (CPP) paradigm in rats, we found that the activity of LDT cholinergic neurons and cholinergic transmission-from the LDT to VTA are critical for the acquisition and expression of cocaine CPP. Moreover, ex vivo electrophysiological analyses revealed that chronic cocaine administration induces plasticity in excitatory synaptic transmission and membrane excitability of LDT cholinergic neurons. Furthermore, noradrenaline, which is released from locus coeruleus axon terminals, attenuated inhibitory synaptic transmission in LDT cholinergic neurons which were obtained from rats that had received chronic cocaine but not saline administrations. This cocaine-induced plasticity in LDT cholinergic neurons may enhance the excitability of these neurons, resulting in changes in the reward circuit activity that might be associated with the development of addicted behaviors induced by cocaine.

分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
背外侧被盖核胆碱能神经元的神经可塑性对可卡因成瘾的影响。
可卡因诱导的由腹侧被盖区(VTA)、伏隔核和内侧前额叶皮层组成的大脑奖赏回路的神经可塑性是可卡因成瘾的关键。最近的研究已经调查了可卡因成瘾中除了中皮质边缘回路之外的大脑区域的参与。一个这样的区域是外侧背被盖核(LDT)。LDT中的胆碱能神经元向VTA投射并调节多巴胺能神经元的活动。利用大鼠可卡因诱导的条件位置偏好(CPP)模式,我们发现下dt胆碱能神经元的活性和从下dt到VTA的胆碱能传递对可卡因CPP的获得和表达至关重要。此外,体外电生理分析显示,慢性可卡因可诱导LDT胆碱能神经元兴奋性突触传递和膜兴奋性的可塑性。此外,从蓝斑轴突末端释放的去甲肾上腺素,减弱了长期服用可卡因而非生理盐水的大鼠LDT胆碱能神经元的抑制性突触传递。这种可卡因诱导的LDT胆碱能神经元的可塑性可能会增强这些神经元的兴奋性,从而导致奖赏回路活动的变化,这可能与可卡因诱导的成瘾行为的发展有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Experience-dependent development of visual cortical functions. Experimental disease models for mechanistic understanding and drug discovery for psychiatric disorders. [Basal Ganglia Circuit Mechanisms in Cognitive Learning]. The contribution of neuroplasticity induced in cholinergic neurons of the laterodorsal tegmental nucleus to cocaine addiction. [Neuroimaging studies of depression: Current status and future direction.]
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1