Nana H Overgaard, Timothy M Fan, Kyle M Schachtschneider, Daniel R Principe, Lawrence B Schook, Gregers Jungersen
{"title":"Of Mice, Dogs, Pigs, and Men: Choosing the Appropriate Model for Immuno-Oncology Research.","authors":"Nana H Overgaard, Timothy M Fan, Kyle M Schachtschneider, Daniel R Principe, Lawrence B Schook, Gregers Jungersen","doi":"10.1093/ilar/ily014","DOIUrl":null,"url":null,"abstract":"<p><p>The immune system plays dual roles in response to cancer. The host immune system protects against tumor formation via immunosurveillance; however, recognition of the tumor by immune cells also induces sculpting mechanisms leading to a Darwinian selection of tumor cell variants with reduced immunogenicity. Cancer immunoediting is the concept used to describe the complex interplay between tumor cells and the immune system. This concept, commonly referred to as the three E's, is encompassed by 3 distinct phases of elimination, equilibrium, and escape. Despite impressive results in the clinic, cancer immunotherapy still has room for improvement as many patients remain unresponsive to therapy. Moreover, many of the preclinical results obtained in the widely used mouse models of cancer are lost in translation to human patients. To improve the success rate of immuno-oncology research and preclinical testing of immune-based anticancer therapies, using alternative animal models more closely related to humans is a promising approach. Here, we describe 2 of the major alternative model systems: canine (spontaneous) and porcine (experimental) cancer models. Although dogs display a high rate of spontaneous tumor formation, an increased number of genetically modified porcine models exist. We suggest that the optimal immuno-oncology model may depend on the stage of cancer immunoediting in question. In particular, the spontaneous canine tumor models provide a unique platform for evaluating therapies aimed at the escape phase of cancer, while genetically engineered swine allow for elucidation of tumor-immune cell interactions especially during the phases of elimination and equilibrium.</p>","PeriodicalId":56299,"journal":{"name":"Ilar Journal","volume":"59 3","pages":"247-262"},"PeriodicalIF":3.1000,"publicationDate":"2018-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/ilar/ily014","citationCount":"37","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ilar Journal","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1093/ilar/ily014","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"VETERINARY SCIENCES","Score":null,"Total":0}
引用次数: 37
Abstract
The immune system plays dual roles in response to cancer. The host immune system protects against tumor formation via immunosurveillance; however, recognition of the tumor by immune cells also induces sculpting mechanisms leading to a Darwinian selection of tumor cell variants with reduced immunogenicity. Cancer immunoediting is the concept used to describe the complex interplay between tumor cells and the immune system. This concept, commonly referred to as the three E's, is encompassed by 3 distinct phases of elimination, equilibrium, and escape. Despite impressive results in the clinic, cancer immunotherapy still has room for improvement as many patients remain unresponsive to therapy. Moreover, many of the preclinical results obtained in the widely used mouse models of cancer are lost in translation to human patients. To improve the success rate of immuno-oncology research and preclinical testing of immune-based anticancer therapies, using alternative animal models more closely related to humans is a promising approach. Here, we describe 2 of the major alternative model systems: canine (spontaneous) and porcine (experimental) cancer models. Although dogs display a high rate of spontaneous tumor formation, an increased number of genetically modified porcine models exist. We suggest that the optimal immuno-oncology model may depend on the stage of cancer immunoediting in question. In particular, the spontaneous canine tumor models provide a unique platform for evaluating therapies aimed at the escape phase of cancer, while genetically engineered swine allow for elucidation of tumor-immune cell interactions especially during the phases of elimination and equilibrium.
期刊介绍:
The ILAR Journal is the peer-reviewed, theme-oriented publication of the Institute for Laboratory Animal Research (ILAR), which provides timely information for all who study, use, care for, and oversee the use of animals in research. The journal publishes original articles that review research on animals either as direct subjects or as surrogates for humans. According to policy, any previously unpublished animal research reported in the ILAR Journal will have been conducted according to the scientific, technical, and humanely appropriate guidelines current at the time the research was conducted in accordance with the Guide for the Care and Use of Laboratory Animals or other guidance provided by taxonomically-oriented professional societies (e.g., American Society of Mammalogy) as referenced in the Guide.