Bone marrow-derived mesenchymal stromal cell: what next?

IF 1.7 Q4 CELL BIOLOGY Stem Cells and Cloning-Advances and Applications Pub Date : 2018-11-08 eCollection Date: 2018-01-01 DOI:10.2147/SCCAA.S147804
Fernanda T Borges, Marcia Bastos Convento, Nestor Schor
{"title":"Bone marrow-derived mesenchymal stromal cell: what next?","authors":"Fernanda T Borges,&nbsp;Marcia Bastos Convento,&nbsp;Nestor Schor","doi":"10.2147/SCCAA.S147804","DOIUrl":null,"url":null,"abstract":"<p><p>Bone marrow mesenchymal stromal cell (MSC) is a potential alternative in regenerative medicine and has great potential in many pathologic conditions including kidney disease. Although most of the studies demonstrate MSC efficiency, the regenerative potential may not be efficient in all diseases and patients. Stem cell feasibility is modified by donor characteristics as gender, age, diet, and health status, producing both positive and negative results. The conditioning of MSC can potentiate its effects and modify its culture medium (CM). In current practices, the cell-free treatment is gaining notable attention, while MSC-conditioned CM is being applied and studied in many experimental diseases, including, but not limited to, certain kidney diseases. This may be the next step for clinical trials. Studies in stem cell CM have focused mainly on extracellular vesicles, nucleic acids (mRNA and microRNA), lipids, and proteins presented in this CM. They mediate regenerative effects of MSC in a harmonic manner. In this review, we will analyze the regenerative potential of MSC and its CM as well as discuss some effective techniques for modifying its fractions and improving its therapeutic potential. CM fractions may be modified by hypoxic conditions, inflammation, lipid exposition, and protein growth factors. Other possible mechanisms of action of stem cells are also suggested. In the future, the MSC paracrine effect may be modified to more closely meet each patient's needs.</p>","PeriodicalId":44934,"journal":{"name":"Stem Cells and Cloning-Advances and Applications","volume":"11 ","pages":"77-83"},"PeriodicalIF":1.7000,"publicationDate":"2018-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2147/SCCAA.S147804","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stem Cells and Cloning-Advances and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2147/SCCAA.S147804","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/1/1 0:00:00","PubModel":"eCollection","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 10

Abstract

Bone marrow mesenchymal stromal cell (MSC) is a potential alternative in regenerative medicine and has great potential in many pathologic conditions including kidney disease. Although most of the studies demonstrate MSC efficiency, the regenerative potential may not be efficient in all diseases and patients. Stem cell feasibility is modified by donor characteristics as gender, age, diet, and health status, producing both positive and negative results. The conditioning of MSC can potentiate its effects and modify its culture medium (CM). In current practices, the cell-free treatment is gaining notable attention, while MSC-conditioned CM is being applied and studied in many experimental diseases, including, but not limited to, certain kidney diseases. This may be the next step for clinical trials. Studies in stem cell CM have focused mainly on extracellular vesicles, nucleic acids (mRNA and microRNA), lipids, and proteins presented in this CM. They mediate regenerative effects of MSC in a harmonic manner. In this review, we will analyze the regenerative potential of MSC and its CM as well as discuss some effective techniques for modifying its fractions and improving its therapeutic potential. CM fractions may be modified by hypoxic conditions, inflammation, lipid exposition, and protein growth factors. Other possible mechanisms of action of stem cells are also suggested. In the future, the MSC paracrine effect may be modified to more closely meet each patient's needs.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
骨髓间充质间质细胞:下一步是什么?
骨髓间充质间质细胞(MSC)是一种潜在的再生医学替代品,在包括肾脏疾病在内的许多病理疾病中具有巨大的潜力。尽管大多数研究证明了MSC的有效性,但再生潜力可能并非对所有疾病和患者都有效。干细胞的可行性受供体特征(如性别、年龄、饮食和健康状况)的影响,产生阳性和阴性结果。调节骨髓间充质干细胞可以增强其作用,并对其培养基进行修饰。在目前的实践中,无细胞治疗正在获得显著的关注,而msc条件下的CM正在应用和研究许多实验性疾病,包括但不限于某些肾脏疾病。这可能是临床试验的下一步。干细胞CM的研究主要集中在细胞外囊泡、核酸(mRNA和microRNA)、脂质和蛋白质上。它们以和谐的方式介导间充质干细胞的再生作用。在这篇综述中,我们将分析MSC及其CM的再生潜力,并讨论一些有效的技术来修饰其组分,提高其治疗潜力。CM组分可能被缺氧条件、炎症、脂质暴露和蛋白质生长因子修饰。本文还提出了其他可能的干细胞作用机制。在未来,MSC旁分泌效应可能会被修改,以更紧密地满足每个患者的需求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.50
自引率
0.00%
发文量
10
审稿时长
16 weeks
期刊最新文献
Autologous Bone Marrow-Derived Mesenchymal Stem Cells in the Reversal of Unobstructed Azoospermia in Rats. Assessment of the Dose-Dependent Effect of Human Platelet Lysate on Wharton's Jelly-Derived Mesenchymal Stem/Stromal Cells Culture for Manufacturing Protocols. A Comprehensive Review of Stem Cell Conditioned Media Role for Anti-Aging on Skin. Intraperitoneal Injection of Graphene Oxide Nanoparticle Accelerates Stem Cell Therapy Effects on Acute Kidney Injury [Retraction]. A Thinkful of "Alginate Beads as a Promising Tool for Successful Production of Viable and Pluripotent Human-Induced Pluripotent Stem Cells in a 3D Culture System" [Letter].
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1