Empirical engineering models for airborne respirable dust capture from water sprays and wet scrubbers.

J A Organiscak, S S Klima, D E Pollock
{"title":"Empirical engineering models for airborne respirable dust capture from water sprays and wet scrubbers.","authors":"J A Organiscak,&nbsp;S S Klima,&nbsp;D E Pollock","doi":"10.19150/me.8547","DOIUrl":null,"url":null,"abstract":"<p><p>Airborne respirable coal dust capture by water sprays or wet scrubbers has been studied and developed over many decades as an engineering control to reduce dust exposure in coal mines and combat coal worker pneumoconiosis. Empirical relationships and deterministic models for particular dust capture experiments have previously been devised to show the key parameters involved in airborne coal dust capture. Many of the results from these models show that the significant parameters related to airborne dust capture are water spray pressure, water quantity, water droplet size, relative water droplet-to-dust particle velocity, and total operating air pressure of the scrubber. However, many airborne dust capture efficiency relationships and models developed for particular experiments cannot be readily applied to forecast the dust collection efficiency of different spray and scrubber design configurations, which rely on several key dimensional engineering measures. This study examines engineering measures from previous water spray and wet scrubber experiments conducted by the U.S. National Institute for Occupational Safety and Health (NIOSH) and the U.S. Bureau of Mines (USBM) to develop empirical models for wet collection of airborne dusts. A dimensionless empirical model developed for predicting airborne dust capture efficiency of water sprays and wet scrubbers is presented.</p>","PeriodicalId":91142,"journal":{"name":"Mining engineering","volume":"70 10","pages":"50-57"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.19150/me.8547","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mining engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.19150/me.8547","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Airborne respirable coal dust capture by water sprays or wet scrubbers has been studied and developed over many decades as an engineering control to reduce dust exposure in coal mines and combat coal worker pneumoconiosis. Empirical relationships and deterministic models for particular dust capture experiments have previously been devised to show the key parameters involved in airborne coal dust capture. Many of the results from these models show that the significant parameters related to airborne dust capture are water spray pressure, water quantity, water droplet size, relative water droplet-to-dust particle velocity, and total operating air pressure of the scrubber. However, many airborne dust capture efficiency relationships and models developed for particular experiments cannot be readily applied to forecast the dust collection efficiency of different spray and scrubber design configurations, which rely on several key dimensional engineering measures. This study examines engineering measures from previous water spray and wet scrubber experiments conducted by the U.S. National Institute for Occupational Safety and Health (NIOSH) and the U.S. Bureau of Mines (USBM) to develop empirical models for wet collection of airborne dusts. A dimensionless empirical model developed for predicting airborne dust capture efficiency of water sprays and wet scrubbers is presented.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从水喷雾和湿式洗涤器捕获空气中可呼吸性粉尘的经验工程模型。
水雾或湿式洗涤器捕集空气中可呼吸性煤尘作为减少煤矿粉尘暴露和防治煤矿工人尘肺病的一种工程控制方法已经研究和发展了几十年。经验关系和确定性模型为特定的粉尘捕获实验已经设计,以显示涉及空气中的煤尘捕获的关键参数。这些模型的许多结果表明,与空气中粉尘捕集有关的重要参数是喷水压力、水量、水滴大小、水滴与粉尘颗粒的相对速度和洗涤器的总工作气压。然而,许多为特定实验开发的空气粉尘捕获效率关系和模型不能很容易地应用于预测不同喷雾和洗涤器设计配置的集尘效率,这依赖于几个关键的维度工程措施。本研究考察了由美国国家职业安全与健康研究所(NIOSH)和美国矿业局(USBM)进行的先前喷水和湿式洗涤器实验的工程措施,以开发湿式收集空气中粉尘的经验模型。提出了一种用于预测喷雾式和湿式洗涤器空气粉尘捕获效率的无因次经验模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
0.10
自引率
0.00%
发文量
0
期刊最新文献
Forty years of NIOSH/USBM-developed control technology: To reduce respirable dust exposure for miners in industrial minerals processing operations. Comparing the Implementation of Two Dust Control Technologies from a Sociotechnical Systems Perspective. Demonstrating the financial impact of mining injuries with the "Safety Pays in Mining" web application. Data transport over leaky feeder systems using Internet-Protocol-enabled land mobile radios. Improving protection against respirable dust at an underground crusher booth.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1