Andrew B Cecala, Justin R Patts, A Kyle Louk, Emily J Haas, Jay F Colinet
{"title":"Forty years of NIOSH/USBM-developed control technology: To reduce respirable dust exposure for miners in industrial minerals processing operations.","authors":"Andrew B Cecala, Justin R Patts, A Kyle Louk, Emily J Haas, Jay F Colinet","doi":"","DOIUrl":"","url":null,"abstract":"","PeriodicalId":91142,"journal":{"name":"Mining engineering","volume":"72 6","pages":"28"},"PeriodicalIF":0.0,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7479988/pdf/nihms-1619521.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38367795","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A sociotechnical system (STS) creates a framework that allows an examination of how social and technical factors affect organizational outcomes within a specific environmental context. STS has been rigorously studied with a primary research focus addressing worker-technology interactions. Although these interactions are important, the social processes and interactions that occur whenever any technical or environmental change is introduced into the system have been undervalued. If social processes are better understood, mining organizations could efficiently prepare and stabilize for such changes. With this goal in mind, we sought to extend STS theory through applying principles of meta-design to analyze the results of two case study interventions. Specifically, we studied the impact of an unregulated dust control technology (the Helmet-CAM) and a regulated dust control technology (the Continuous Personal Dust Monitor) on factors within an STS including employees' knowledge of, communication about, and use of technology to mitigate respirable dust sources. The results are presented in a way that first, addresses the overarching principles of meta-design STS including organizational participation, flexibility, and communication and second, examines how technology implementation processes differ when the organization is complying with a formal, higher-level requirement. Results show that a prominent focus on the social factors within an STS framework could help reduce unpredictability on the technical side and may improve communication within the system to help reduce adoption time, especially if and when accompanying a new, formal work process.
{"title":"Comparing the Implementation of Two Dust Control Technologies from a Sociotechnical Systems Perspective.","authors":"Emily J Haas, Andrew B Cecala, Jay F Colinet","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>A sociotechnical system (STS) creates a framework that allows an examination of how social and technical factors affect organizational outcomes within a specific environmental context. STS has been rigorously studied with a primary research focus addressing worker-technology interactions. Although these interactions are important, the social processes and interactions that occur whenever any technical or environmental change is introduced into the system have been undervalued. If social processes are better understood, mining organizations could efficiently prepare and stabilize for such changes. With this goal in mind, we sought to extend STS theory through applying principles of meta-design to analyze the results of two case study interventions. Specifically, we studied the impact of an unregulated dust control technology (the Helmet-CAM) and a regulated dust control technology (the Continuous Personal Dust Monitor) on factors within an STS including employees' knowledge of, communication about, and use of technology to mitigate respirable dust sources. The results are presented in a way that first, addresses the overarching principles of meta-design STS including organizational participation, flexibility, and communication and second, examines how technology implementation processes differ when the organization is complying with a formal, higher-level requirement. Results show that a prominent focus on the social factors within an STS framework could help reduce unpredictability on the technical side and may improve communication within the system to help reduce adoption time, especially if and when accompanying a new, formal work process.</p>","PeriodicalId":91142,"journal":{"name":"Mining engineering","volume":"36 ","pages":"709-727"},"PeriodicalIF":0.0,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11118793/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141155920","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mine monitoring through various sensors is a vital component of successful miner safety and health programs. Data from environmental, geotechnical, infrastructure and other types of sensors are increasingly used to discover and mitigate health and safety concerns in underground mines. In many smaller underground mines, as well as in the new development headings of larger underground mines, leaky feeder communication systems may be the only available means to transport crucial monitoring data. In addition, data transport is increasingly being delivered using Internet Protocol (IP), while older forms of serial communication are being retired. This paper presents the selection, configuration and testing methodologies employed by researchers from the U.S. National Institute for Occupational Safety and Health (NIOSH) to integrate commercially available land mobile data radios into an existing leaky feeder communication system to provide IP data transport.
{"title":"Data transport over leaky feeder systems using Internet-Protocol-enabled land mobile radios.","authors":"R Jacksha, C Sunderman","doi":"10.19150/me.8644","DOIUrl":"https://doi.org/10.19150/me.8644","url":null,"abstract":"<p><p>Mine monitoring through various sensors is a vital component of successful miner safety and health programs. Data from environmental, geotechnical, infrastructure and other types of sensors are increasingly used to discover and mitigate health and safety concerns in underground mines. In many smaller underground mines, as well as in the new development headings of larger underground mines, leaky feeder communication systems may be the only available means to transport crucial monitoring data. In addition, data transport is increasingly being delivered using Internet Protocol (IP), while older forms of serial communication are being retired. This paper presents the selection, configuration and testing methodologies employed by researchers from the U.S. National Institute for Occupational Safety and Health (NIOSH) to integrate commercially available land mobile data radios into an existing leaky feeder communication system to provide IP data transport.</p>","PeriodicalId":91142,"journal":{"name":"Mining engineering","volume":"70 12","pages":"44-47"},"PeriodicalIF":0.0,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6400079/pdf/nihms-1002296.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37210273","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The "Safety Pays in Mining" web application, developed by the U.S. National Institute for Occupational Safety and Health Mining Program, helps mines determine the potential costs associated with mining injuries. This web app groups injuries by type, either by the cause of the injury or by the nature of the injury. When the user selects one of more than 30 common types of mining injuries, the app provides information on the distribution of costs of workers' compensation claims for that type of injury. Based on other user inputs, the app will estimate the total costs of the selected injuries, including an estimate of additional indirect costs, the estimated impact of total injury costs on mining company profits, and provide some examples of other items, such as services or equipment, on which companies could spend the savings that result from the prevention of injuries. This paper reviews the app by discussing its development, how it is used to show the true costs of mining injuries, and how mines can benefit from using it.
{"title":"Demonstrating the financial impact of mining injuries with the \"Safety Pays in Mining\" web application.","authors":"J R Heberger","doi":"10.19150/me.8643","DOIUrl":"https://doi.org/10.19150/me.8643","url":null,"abstract":"<p><p>The \"Safety Pays in Mining\" web application, developed by the U.S. National Institute for Occupational Safety and Health Mining Program, helps mines determine the potential costs associated with mining injuries. This web app groups injuries by type, either by the cause of the injury or by the nature of the injury. When the user selects one of more than 30 common types of mining injuries, the app provides information on the distribution of costs of workers' compensation claims for that type of injury. Based on other user inputs, the app will estimate the total costs of the selected injuries, including an estimate of additional indirect costs, the estimated impact of total injury costs on mining company profits, and provide some examples of other items, such as services or equipment, on which companies could spend the savings that result from the prevention of injuries. This paper reviews the app by discussing its development, how it is used to show the true costs of mining injuries, and how mines can benefit from using it.</p>","PeriodicalId":91142,"journal":{"name":"Mining engineering","volume":"70 12","pages":"37-43"},"PeriodicalIF":0.0,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6379894/pdf/nihms-1001287.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"36987967","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The U.S. National Institute for Occupational Safety and Health completed a 15-month study at an underground limestone mine crusher booth that evaluated three research parameters: (1) the effectiveness of a filtration and pressurization system for improving the air quality inside the operator booth, (2) the relative effectiveness of η > 99 and η > 95 experimental prototype filters in the system, and (3) the performance of three different cab pressure monitoring devices. The protection factor was quantified monthly using particle counters in the respirable dust range of 0.3 to 1 μm particle size, and gravimetric dust samples were gathered at the beginning and end of the overall study. Under static (closed-door) conditions, the filtration unit offered a gravimetric calculated protection factor between 10 and 31, depending on the filter type and loading condition. The monthly particle counting analysis shows that the η > 95 filter offers a protection factor nearly five times that of the η > 99 filter, where n = 15 samples. The booth pressure monitors were tested and proved to be a valid indicator of system performance over time.
{"title":"Improving protection against respirable dust at an underground crusher booth.","authors":"J. Patts, A. Cecala, J. P. Rider, J. Organiscak","doi":"10.19150/ME.8602","DOIUrl":"https://doi.org/10.19150/ME.8602","url":null,"abstract":"The U.S. National Institute for Occupational Safety and Health completed a 15-month study at an underground limestone mine crusher booth that evaluated three research parameters: (1) the effectiveness of a filtration and pressurization system for improving the air quality inside the operator booth, (2) the relative effectiveness of η > 99 and η > 95 experimental prototype filters in the system, and (3) the performance of three different cab pressure monitoring devices. The protection factor was quantified monthly using particle counters in the respirable dust range of 0.3 to 1 μm particle size, and gravimetric dust samples were gathered at the beginning and end of the overall study. Under static (closed-door) conditions, the filtration unit offered a gravimetric calculated protection factor between 10 and 31, depending on the filter type and loading condition. The monthly particle counting analysis shows that the η > 95 filter offers a protection factor nearly five times that of the η > 99 filter, where n = 15 samples. The booth pressure monitors were tested and proved to be a valid indicator of system performance over time.","PeriodicalId":91142,"journal":{"name":"Mining engineering","volume":"70 11 1","pages":"52-56"},"PeriodicalIF":0.0,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43002272","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Canopy air curtains on roof bolting machines have been proven to protect miners from respirable dust, preventing their overexposure to dust. Another desired application for canopy air curtains is in the compartments of shuttle cars. The challenges faced in developing the design of canopy air curtains for shuttle cars include mine ventilation rates in tandem with the shuttle car tram speeds. The resulting cab airspeeds may exceed 182 m/min (600 fpm), as found in the present study conducted in a central Appalachian underground coal mine by U.S. National Institute for Occupational Safety and Health (NIOSH) researchers. Prior research and laboratory testing had indicated that successfully protecting a miner in high air velocities is difficult, because the clean air from the canopy air curtain is unable to penetrate through the high-velocity mine air. In this study, the dust concentrations to which a shuttle car operator was exposed were measured, and air velocities experienced by the operator were measured as well using a recording vane anemometer. The results indicate that the highest exposure to respirable dust, 2.22 mg/m3, occurred when the shuttle car was loading at the continuous miner, where the average airspeed was 48 m/min (157 fpm). While tramming, the operator was exposed to 0.77 mg/m3 of respirable dust with an average airspeed of 62 m/min (203 fpm). This study indicates that a canopy air curtain system can be designed to greatly reduce an operator's exposure to respirable dust by providing clean air to the operator, as the majority of the operator's dust exposure occurs in air velocities slower than 61 m/min (200 fpm).
{"title":"Field investigation to measure airflow velocities of a shuttle car using independent routes at a central Appalachian underground coal mine.","authors":"M Shahan, W R Reed, M Yekich, G Ross","doi":"10.19150/me.8601","DOIUrl":"https://doi.org/10.19150/me.8601","url":null,"abstract":"<p><p>Canopy air curtains on roof bolting machines have been proven to protect miners from respirable dust, preventing their overexposure to dust. Another desired application for canopy air curtains is in the compartments of shuttle cars. The challenges faced in developing the design of canopy air curtains for shuttle cars include mine ventilation rates in tandem with the shuttle car tram speeds. The resulting cab airspeeds may exceed 182 m/min (600 fpm), as found in the present study conducted in a central Appalachian underground coal mine by U.S. National Institute for Occupational Safety and Health (NIOSH) researchers. Prior research and laboratory testing had indicated that successfully protecting a miner in high air velocities is difficult, because the clean air from the canopy air curtain is unable to penetrate through the high-velocity mine air. In this study, the dust concentrations to which a shuttle car operator was exposed were measured, and air velocities experienced by the operator were measured as well using a recording vane anemometer. The results indicate that the highest exposure to respirable dust, 2.22 mg/m<sup>3</sup>, occurred when the shuttle car was loading at the continuous miner, where the average airspeed was 48 m/min (157 fpm). While tramming, the operator was exposed to 0.77 mg/m<sup>3</sup> of respirable dust with an average airspeed of 62 m/min (203 fpm). This study indicates that a canopy air curtain system can be designed to greatly reduce an operator's exposure to respirable dust by providing clean air to the operator, as the majority of the operator's dust exposure occurs in air velocities slower than 61 m/min (200 fpm).</p>","PeriodicalId":91142,"journal":{"name":"Mining engineering","volume":"70 11","pages":"45-51"},"PeriodicalIF":0.0,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6298443/pdf/nihms-997352.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"36793287","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The U.S. National Institute for Occupational Safety and Health completed a 15-month study at an underground limestone mine crusher booth that evaluated three research parameters: (1) the effectiveness of a filtration and pressurization system for improving the air quality inside the operator booth, (2) the relative effectiveness of η > 99 and η > 95 experimental prototype filters in the system, and (3) the performance of three different cab pressure monitoring devices. The protection factor was quantified monthly using particle counters in the respirable dust range of 0.3 to 1 μm particle size, and gravimetric dust samples were gathered at the beginning and end of the overall study. Under static (closed-door) conditions, the filtration unit offered a gravimetric calculated protection factor between 10 and 31, depending on the filter type and loading condition. The monthly particle counting analysis shows that the η > 95 filter offers a protection factor nearly five times that of the η > 99 filter, where n = 15 samples. The booth pressure monitors were tested and proved to be a valid indicator of system performance over time.
{"title":"Improving protection against respirable dust at an underground crusher booth.","authors":"J R Patts, A B Cecala, J P Rider, J A Organiscak","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>The U.S. National Institute for Occupational Safety and Health completed a 15-month study at an underground limestone mine crusher booth that evaluated three research parameters: (1) the effectiveness of a filtration and pressurization system for improving the air quality inside the operator booth, (2) the relative effectiveness of <i>η</i> > 99 and <i>η</i> > 95 experimental prototype filters in the system, and (3) the performance of three different cab pressure monitoring devices. The protection factor was quantified monthly using particle counters in the respirable dust range of 0.3 to 1 μm particle size, and gravimetric dust samples were gathered at the beginning and end of the overall study. Under static (closed-door) conditions, the filtration unit offered a gravimetric calculated protection factor between 10 and 31, depending on the filter type and loading condition. The monthly particle counting analysis shows that the <i>η</i> > 95 filter offers a protection factor nearly five times that of the <i>η</i> > 99 filter, where <i>n</i> = 15 samples. The booth pressure monitors were tested and proved to be a valid indicator of system performance over time.</p>","PeriodicalId":91142,"journal":{"name":"Mining engineering","volume":"70 11","pages":"52-56"},"PeriodicalIF":0.0,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6268007/pdf/nihms-995777.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"36743240","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Airborne respirable coal dust capture by water sprays or wet scrubbers has been studied and developed over many decades as an engineering control to reduce dust exposure in coal mines and combat coal worker pneumoconiosis. Empirical relationships and deterministic models for particular dust capture experiments have previously been devised to show the key parameters involved in airborne coal dust capture. Many of the results from these models show that the significant parameters related to airborne dust capture are water spray pressure, water quantity, water droplet size, relative water droplet-to-dust particle velocity, and total operating air pressure of the scrubber. However, many airborne dust capture efficiency relationships and models developed for particular experiments cannot be readily applied to forecast the dust collection efficiency of different spray and scrubber design configurations, which rely on several key dimensional engineering measures. This study examines engineering measures from previous water spray and wet scrubber experiments conducted by the U.S. National Institute for Occupational Safety and Health (NIOSH) and the U.S. Bureau of Mines (USBM) to develop empirical models for wet collection of airborne dusts. A dimensionless empirical model developed for predicting airborne dust capture efficiency of water sprays and wet scrubbers is presented.
{"title":"Empirical engineering models for airborne respirable dust capture from water sprays and wet scrubbers.","authors":"J A Organiscak, S S Klima, D E Pollock","doi":"10.19150/me.8547","DOIUrl":"https://doi.org/10.19150/me.8547","url":null,"abstract":"<p><p>Airborne respirable coal dust capture by water sprays or wet scrubbers has been studied and developed over many decades as an engineering control to reduce dust exposure in coal mines and combat coal worker pneumoconiosis. Empirical relationships and deterministic models for particular dust capture experiments have previously been devised to show the key parameters involved in airborne coal dust capture. Many of the results from these models show that the significant parameters related to airborne dust capture are water spray pressure, water quantity, water droplet size, relative water droplet-to-dust particle velocity, and total operating air pressure of the scrubber. However, many airborne dust capture efficiency relationships and models developed for particular experiments cannot be readily applied to forecast the dust collection efficiency of different spray and scrubber design configurations, which rely on several key dimensional engineering measures. This study examines engineering measures from previous water spray and wet scrubber experiments conducted by the U.S. National Institute for Occupational Safety and Health (NIOSH) and the U.S. Bureau of Mines (USBM) to develop empirical models for wet collection of airborne dusts. A dimensionless empirical model developed for predicting airborne dust capture efficiency of water sprays and wet scrubbers is presented.</p>","PeriodicalId":91142,"journal":{"name":"Mining engineering","volume":"70 10","pages":"50-57"},"PeriodicalIF":0.0,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.19150/me.8547","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"36765535","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Federal regulations require refuge alternatives in underground coal mines to sustain life for 96 h while maintaining an apparent temperature below 35 °C (95 °F). Research by the U.S. National Institute for Occupational Safety and Health (NIOSH) has shown that heat and humidity buildup is a major concern with refuge alternatives because they have limited ability to dissipate heat, and high internal air temperature and relative humidity (RH) may expose occupants to heat stress. The heat transfer process within and surrounding a refuge alternative is complex and not easily defined, analytically or experimentally. To investigate heat and humidity buildup in refuge alternatives, NIOSH conducted multiple in-mine, 96-h tests on a 10-person tent-type refuge alternative, a 23-person tent-type refuge alternative and a six-person metal-type refuge alternative. The results show that when moisture was introduced to represent perspiration and respiration from miners (wet tests), the average temperature at midheight increased by 10.5 °C (18.9 °F) and the RH approached 88 percent for the 10-person tent-type refuge alternative; the average temperature at midheight increased by 9.4 °C (16.9 °F) and the RH approached 94 percent for the 23-person tent-type refuge alternative; and the average temperature at midheight increased by 7.7 °C (13.9 °F) and the RH approached 95 percent for the six-person metal-type refuge alternative. For the dry tests, where no moisture was introduced, the average internal temperature increased by 12.6 °C (22.7 °F) for the 10-person tent-type refuge alternative, by 10.3 °C (18.5 °F) for the 23-person tent-type refuge alternative and by 8.4 °C (15.1 °F) for the six-person metal-type refuge alternative. These results may provide refuge alternative manufacturers and mine operators with guidelines and considerations for evaluating temperature profiles for portable refuge alternatives. The information may then be used to make decisions on occupancy ratings and heat mitigation strategies based on the thermal environment in which the refuge alternatives will be installed.
{"title":"Portable refuge alternatives temperature and humidity tests.","authors":"L Yan, D Yantek","doi":"10.19150/me.8546","DOIUrl":"https://doi.org/10.19150/me.8546","url":null,"abstract":"<p><p>Federal regulations require refuge alternatives in underground coal mines to sustain life for 96 h while maintaining an apparent temperature below 35 °C (95 °F). Research by the U.S. National Institute for Occupational Safety and Health (NIOSH) has shown that heat and humidity buildup is a major concern with refuge alternatives because they have limited ability to dissipate heat, and high internal air temperature and relative humidity (RH) may expose occupants to heat stress. The heat transfer process within and surrounding a refuge alternative is complex and not easily defined, analytically or experimentally. To investigate heat and humidity buildup in refuge alternatives, NIOSH conducted multiple in-mine, 96-h tests on a 10-person tent-type refuge alternative, a 23-person tent-type refuge alternative and a six-person metal-type refuge alternative. The results show that when moisture was introduced to represent perspiration and respiration from miners (wet tests), the average temperature at midheight increased by 10.5 °C (18.9 °F) and the RH approached 88 percent for the 10-person tent-type refuge alternative; the average temperature at midheight increased by 9.4 °C (16.9 °F) and the RH approached 94 percent for the 23-person tent-type refuge alternative; and the average temperature at midheight increased by 7.7 °C (13.9 °F) and the RH approached 95 percent for the six-person metal-type refuge alternative. For the dry tests, where no moisture was introduced, the average internal temperature increased by 12.6 °C (22.7 °F) for the 10-person tent-type refuge alternative, by 10.3 °C (18.5 °F) for the 23-person tent-type refuge alternative and by 8.4 °C (15.1 °F) for the six-person metal-type refuge alternative. These results may provide refuge alternative manufacturers and mine operators with guidelines and considerations for evaluating temperature profiles for portable refuge alternatives. The information may then be used to make decisions on occupancy ratings and heat mitigation strategies based on the thermal environment in which the refuge alternatives will be installed.</p>","PeriodicalId":91142,"journal":{"name":"Mining engineering","volume":"70 10","pages":"43-49"},"PeriodicalIF":0.0,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6345178/pdf/nihms-996691.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"36945692","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
After industrial sand has been mined and processed, the finished product is typically loaded into small bags of 45 kg (100 lb) or less, large bulk bags of 454 to 1,361 kg (1,000 to 3,000 lb), or vehicles such as trucks or trains for transport to end users. As the sand is being transferred and loaded, dust can be released into the work environment, potentially exposing workers to respirable crystalline silica. A number of control technologies have been developed and utilized in an effort to reduce dust liberation during loading operations. For bulk loading into trucks or trains, the U.S. National Institute for Occupational Safety and Health (NIOSH) evaluated one of these technologies, the Dust Suppression Hopper (DSH), at two industrial sand processing plants. Results from these case studies show that the DSH reduced airborne respirable dust levels by 39 to 88 percent, depending upon the product size being loaded.
{"title":"Dust Suppression Hopper: reduces dust liberation during bulk loading: Two case studies.","authors":"J F Colinet, A B Cecala, J R Patts","doi":"10.19150/me.8489","DOIUrl":"https://doi.org/10.19150/me.8489","url":null,"abstract":"<p><p>After industrial sand has been mined and processed, the finished product is typically loaded into small bags of 45 kg (100 lb) or less, large bulk bags of 454 to 1,361 kg (1,000 to 3,000 lb), or vehicles such as trucks or trains for transport to end users. As the sand is being transferred and loaded, dust can be released into the work environment, potentially exposing workers to respirable crystalline silica. A number of control technologies have been developed and utilized in an effort to reduce dust liberation during loading operations. For bulk loading into trucks or trains, the U.S. National Institute for Occupational Safety and Health (NIOSH) evaluated one of these technologies, the Dust Suppression Hopper (DSH), at two industrial sand processing plants. Results from these case studies show that the DSH reduced airborne respirable dust levels by 39 to 88 percent, depending upon the product size being loaded.</p>","PeriodicalId":91142,"journal":{"name":"Mining engineering","volume":"70 9","pages":"41-46"},"PeriodicalIF":0.0,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6214477/pdf/nihms-988905.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"36634607","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}