A Simple Method for Removal of the Chlamydomonas reinhardtii Cell Wall Using a Commercially Available Subtilisin (Alcalase).

IF 1.2 Q2 Biochemistry, Genetics and Molecular Biology Journal of Molecular Microbiology and Biotechnology Pub Date : 2018-01-01 Epub Date: 2018-12-19 DOI:10.1159/000495183
Hyun-Ju Hwang, Yong Tae Kim, Nam Seon Kang, Jong Won Han
{"title":"A Simple Method for Removal of the Chlamydomonas reinhardtii Cell Wall Using a Commercially Available Subtilisin (Alcalase).","authors":"Hyun-Ju Hwang,&nbsp;Yong Tae Kim,&nbsp;Nam Seon Kang,&nbsp;Jong Won Han","doi":"10.1159/000495183","DOIUrl":null,"url":null,"abstract":"<p><p>The algal cell wall is a potent barrier for delivery of transgenes for genetic engineering. Conventional methods developed for higher plant systems are often unable to penetrate or remove algal cell walls owing to their unique physical and chemical properties. Therefore, we developed a simple transformation method for Chlamydomonas reinhardtii using commercially available enzymes. Out of 7 enzymes screened for cell wall disruption, a commercial form of subtilisin (Alcalase) was the most effective at a low concentration (0.3 Anson units/mL). The efficiency was comparable to that of gamete lytic enzyme, a protease commonly used for the genetic transformation of C. reinhardtii. The transformation efficiency of our noninvasive method was similar to that of previous methods using autolysin as a cell wall-degrading enzyme in conjunction with glass bead transformation. Subtilisin showed approximately 35% sequence identity with sporangin, a hatching enzyme of C. reinhardtii, and shared conserved active domains, which may explain the effective cell wall degradation. Our trans-formation method using commercial subtilisin is more reliable and time saving than the conventional method using autolysin released from gametes for cell wall lysis.</p>","PeriodicalId":16370,"journal":{"name":"Journal of Molecular Microbiology and Biotechnology","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1159/000495183","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Microbiology and Biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1159/000495183","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/12/19 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 11

Abstract

The algal cell wall is a potent barrier for delivery of transgenes for genetic engineering. Conventional methods developed for higher plant systems are often unable to penetrate or remove algal cell walls owing to their unique physical and chemical properties. Therefore, we developed a simple transformation method for Chlamydomonas reinhardtii using commercially available enzymes. Out of 7 enzymes screened for cell wall disruption, a commercial form of subtilisin (Alcalase) was the most effective at a low concentration (0.3 Anson units/mL). The efficiency was comparable to that of gamete lytic enzyme, a protease commonly used for the genetic transformation of C. reinhardtii. The transformation efficiency of our noninvasive method was similar to that of previous methods using autolysin as a cell wall-degrading enzyme in conjunction with glass bead transformation. Subtilisin showed approximately 35% sequence identity with sporangin, a hatching enzyme of C. reinhardtii, and shared conserved active domains, which may explain the effective cell wall degradation. Our trans-formation method using commercial subtilisin is more reliable and time saving than the conventional method using autolysin released from gametes for cell wall lysis.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种利用市售枯草菌素(Alcalase)去除莱茵衣藻细胞壁的简单方法。
藻类细胞壁是基因工程中传递转基因的有效屏障。由于藻类独特的物理和化学性质,为高等植物系统开发的常规方法往往无法穿透或去除藻类细胞壁。因此,我们开发了一种简单的利用市售酶转化莱茵衣藻的方法。在筛选细胞壁破坏的7种酶中,商业形式的枯草杆菌素(Alcalase)在低浓度(0.3 Anson单位/mL)下最有效。该效率与配子裂解酶相当,配子裂解酶是一种常用的蛋白酶,用于莱茵哈特氏菌的遗传转化。我们的无创方法的转化效率与以前使用自溶素作为细胞壁降解酶结合玻璃珠转化的方法相似。枯草杆菌素与C. reinhardtii的一种孵化酶孢子囊素(sporangin)序列具有35%的同源性,并且具有相同的保守活性域,这可能解释了其有效降解细胞壁的原因。我们使用商业枯草菌素的转化方法比使用配子释放的自溶素进行细胞壁裂解的传统方法更可靠,更节省时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Molecular Microbiology and Biotechnology
Journal of Molecular Microbiology and Biotechnology 生物-生物工程与应用微生物
CiteScore
3.90
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: We are entering a new and exciting era of microbiological study and application. Recent advances in the now established disciplines of genomics, proteomics and bioinformatics, together with extensive cooperation between academic and industrial concerns have brought about an integration of basic and applied microbiology as never before.
期刊最新文献
Contents Front & Back Matter The Life Cycle of Dictyostelium discoideum Is Accelerated via MAP Kinase Cascade by a Culture Extract Produced by a Synthetic Microbial Consortium A Riboflavin Transporter in Bdellovibrio exovorous JSS Front & Back Matter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1