Algorithms for automated detection of hook effect-bearing amplification curves

Q1 Biochemistry, Genetics and Molecular Biology Biomolecular Detection and Quantification Pub Date : 2018-12-01 DOI:10.1016/j.bdq.2018.08.001
Michał Burdukiewicz , Andrej-Nikolai Spiess , Konstantin A. Blagodatskikh , Werner Lehmann , Peter Schierack , Stefan Rödiger
{"title":"Algorithms for automated detection of hook effect-bearing amplification curves","authors":"Michał Burdukiewicz ,&nbsp;Andrej-Nikolai Spiess ,&nbsp;Konstantin A. Blagodatskikh ,&nbsp;Werner Lehmann ,&nbsp;Peter Schierack ,&nbsp;Stefan Rödiger","doi":"10.1016/j.bdq.2018.08.001","DOIUrl":null,"url":null,"abstract":"<div><p>Amplification curves from quantitative Real-Time PCR experiments typically exhibit a sigmoidal shape. They can roughly be divided into a ground or baseline phase, an exponential amplification phase, a linear phase and finally a plateau phase, where in the latter, the PCR product concentration no longer increases. Nevertheless, in some cases the plateau phase displays a negative trend, e.g. in hydrolysis probe assays. This cycle-to-cycle fluorescence decrease is commonly referred to in the literature as the <em>hook effect</em>. Other detection chemistries also exhibit this negative trend, however the underlying molecular mechanisms are different.</p><p>In this study we present two approaches to automatically detect hook effect-like curvatures based on linear (<em>hookreg</em>) and nonlinear regression (<em>hookregNL</em>). As the hook effect is typical for qPCR data, both algorithms can be employed for the automated identification of regular structured qPCR curves. Therefore, our algorithms streamline quality control, but can also be used for assay optimization or machine learning.</p></div>","PeriodicalId":38073,"journal":{"name":"Biomolecular Detection and Quantification","volume":"16 ","pages":"Pages 1-4"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.bdq.2018.08.001","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomolecular Detection and Quantification","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S221475351730219X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 12

Abstract

Amplification curves from quantitative Real-Time PCR experiments typically exhibit a sigmoidal shape. They can roughly be divided into a ground or baseline phase, an exponential amplification phase, a linear phase and finally a plateau phase, where in the latter, the PCR product concentration no longer increases. Nevertheless, in some cases the plateau phase displays a negative trend, e.g. in hydrolysis probe assays. This cycle-to-cycle fluorescence decrease is commonly referred to in the literature as the hook effect. Other detection chemistries also exhibit this negative trend, however the underlying molecular mechanisms are different.

In this study we present two approaches to automatically detect hook effect-like curvatures based on linear (hookreg) and nonlinear regression (hookregNL). As the hook effect is typical for qPCR data, both algorithms can be employed for the automated identification of regular structured qPCR curves. Therefore, our algorithms streamline quality control, but can also be used for assay optimization or machine learning.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
挂钩效应轴承放大曲线的自动检测算法
实时荧光定量PCR实验的扩增曲线通常呈s形。它们大致可分为基础或基线阶段,指数扩增阶段,线性阶段,最后是平台阶段,在平台阶段,PCR产物浓度不再增加。然而,在某些情况下,平台相呈现负趋势,例如在水解探针测定中。这种循环到循环的荧光减少在文献中通常被称为钩效应。其他检测化学物质也表现出这种负趋势,但潜在的分子机制不同。在这项研究中,我们提出了两种基于线性(hookreg)和非线性回归(hookregNL)的钩子效应曲率自动检测方法。由于钩效应在qPCR数据中是典型的,这两种算法都可以用于规则结构qPCR曲线的自动识别。因此,我们的算法简化了质量控制,但也可用于分析优化或机器学习。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biomolecular Detection and Quantification
Biomolecular Detection and Quantification Biochemistry, Genetics and Molecular Biology-Biochemistry
CiteScore
14.20
自引率
0.00%
发文量
0
审稿时长
8 weeks
期刊最新文献
Publisher's Note Establishing essential quality criteria for the validation of circular RNAs as biomarkers qPCR data analysis: Better results through iconoclasm Considerations and quality controls when analyzing cell-free tumor DNA Next-generation sequencing of HIV-1 single genome amplicons
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1