EXACT SPIKE TRAIN INFERENCE VIA ℓ0 OPTIMIZATION.

IF 1.3 4区 数学 Q2 STATISTICS & PROBABILITY Annals of Applied Statistics Pub Date : 2018-12-01 Epub Date: 2018-11-13 DOI:10.1214/18-AOAS1162
{"title":"EXACT SPIKE TRAIN INFERENCE VIA ℓ<sub>0</sub> OPTIMIZATION.","authors":"Sean Jewell, Daniela Witten","doi":"10.1214/18-AOAS1162","DOIUrl":null,"url":null,"abstract":"<p><p>In recent years new technologies in neuroscience have made it possible to measure the activities of large numbers of neurons simultaneously in behaving animals. For each neuron a <i>fluorescence trace</i> is measured; this can be seen as a first-order approximation of the neuron's activity over time. Determining the exact time at which a neuron spikes on the basis of its fluorescence trace is an important open problem in the field of computational neuroscience. Recently, a convex optimization problem involving an ℓ<sub>1</sub> penalty was proposed for this task. In this paper we slightly modify that recent proposal by replacing the ℓ<sub>1</sub> penalty with an ℓ<sub>0</sub> penalty. In stark contrast to the conventional wisdom that ℓ<sub>0</sub> optimization problems are computationally intractable, we show that the resulting optimization problem can be efficiently solved for the global optimum using an extremely simple and efficient dynamic programming algorithm. Our R-language implementation of the proposed algorithm runs in a few minutes on fluorescence traces of 100,000 timesteps. Furthermore, our proposal leads to substantial improvements over the previous ℓ<sub>1</sub> proposal, in simulations as well as on two calcium imaging datasets. R-language software for our proposal is available on CRAN in the package LZeroSpikeInference. Instructions for running this software in python can be found at https://github.com/jewellsean/LZeroSpikeInference.</p>","PeriodicalId":50772,"journal":{"name":"Annals of Applied Statistics","volume":"12 4","pages":"2457-2482"},"PeriodicalIF":1.3000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6322847/pdf/nihms-997321.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Applied Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/18-AOAS1162","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/11/13 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

In recent years new technologies in neuroscience have made it possible to measure the activities of large numbers of neurons simultaneously in behaving animals. For each neuron a fluorescence trace is measured; this can be seen as a first-order approximation of the neuron's activity over time. Determining the exact time at which a neuron spikes on the basis of its fluorescence trace is an important open problem in the field of computational neuroscience. Recently, a convex optimization problem involving an ℓ1 penalty was proposed for this task. In this paper we slightly modify that recent proposal by replacing the ℓ1 penalty with an ℓ0 penalty. In stark contrast to the conventional wisdom that ℓ0 optimization problems are computationally intractable, we show that the resulting optimization problem can be efficiently solved for the global optimum using an extremely simple and efficient dynamic programming algorithm. Our R-language implementation of the proposed algorithm runs in a few minutes on fluorescence traces of 100,000 timesteps. Furthermore, our proposal leads to substantial improvements over the previous ℓ1 proposal, in simulations as well as on two calcium imaging datasets. R-language software for our proposal is available on CRAN in the package LZeroSpikeInference. Instructions for running this software in python can be found at https://github.com/jewellsean/LZeroSpikeInference.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过ℓ0优化。
近年来,神经科学的新技术使同时测量行为动物中大量神经元的活动成为可能。对于每个神经元,测量荧光迹线;这可以看作是神经元活动随时间变化的一阶近似值。根据神经元的荧光轨迹确定神经元尖峰的确切时间是计算神经科学领域的一个重要的开放问题。最近,一个凸优化问题涉及ℓ建议对该任务进行1次处罚。在本文中,我们略微修改了最近的提案,将ℓ1罚ℓ0罚款。与传统观点形成鲜明对比的是ℓ0优化问题在计算上是棘手的,我们证明了使用一种极其简单有效的动态规划算法可以有效地解决由此产生的全局优化问题。我们提出的算法的R语言实现在100000个时间步长的荧光轨迹上运行几分钟。此外,我们的提案比以前有了实质性的改进ℓ1提案,在模拟以及两个钙成像数据集上。我们的提案的R语言软件可在CRAN上的LZeroSpikeInference包中获得。有关在python中运行此软件的说明,请访问https://github.com/jewellsean/LZeroSpikeInference.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Annals of Applied Statistics
Annals of Applied Statistics 社会科学-统计学与概率论
CiteScore
3.10
自引率
5.60%
发文量
131
审稿时长
6-12 weeks
期刊介绍: Statistical research spans an enormous range from direct subject-matter collaborations to pure mathematical theory. The Annals of Applied Statistics, the newest journal from the IMS, is aimed at papers in the applied half of this range. Published quarterly in both print and electronic form, our goal is to provide a timely and unified forum for all areas of applied statistics.
期刊最新文献
CAUSAL HEALTH IMPACTS OF POWER PLANT EMISSION CONTROLS UNDER MODELED AND UNCERTAIN PHYSICAL PROCESS INTERFERENCE. A SPATIALLY VARYING HIERARCHICAL RANDOM EFFECTS MODEL FOR LONGITUDINAL MACULAR STRUCTURAL DATA IN GLAUCOMA PATIENTS. INDIVIDUAL DYNAMIC PREDICTION FOR CURE AND SURVIVAL BASED ON LONGITUDINAL BIOMARKERS. A SEMIPARAMETRIC METHOD FOR RISK PREDICTION USING INTEGRATED ELECTRONIC HEALTH RECORD DATA. MODELING TRAJECTORIES USING FUNCTIONAL LINEAR DIFFERENTIAL EQUATIONS.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1