Hyaluronan-CD44 interactions mediate contractility and migration in periodontal ligament cells.

IF 3.3 3区 生物学 Q3 CELL BIOLOGY Cell Adhesion & Migration Pub Date : 2019-12-01 Epub Date: 2019-02-08 DOI:10.1080/19336918.2019.1568140
Zeinab Al-Rekabi, Adriane M Fura, Ilsa Juhlin, Alaa Yassin, Tracy E Popowics, Nathan J Sniadecki
{"title":"Hyaluronan-CD44 interactions mediate contractility and migration in periodontal ligament cells.","authors":"Zeinab Al-Rekabi,&nbsp;Adriane M Fura,&nbsp;Ilsa Juhlin,&nbsp;Alaa Yassin,&nbsp;Tracy E Popowics,&nbsp;Nathan J Sniadecki","doi":"10.1080/19336918.2019.1568140","DOIUrl":null,"url":null,"abstract":"<p><p>The role of hyaluronan (HA) in periodontal healing has been speculated via its interaction with the CD44 receptor. While HA-CD44 interactions have previously been implicated in numerous cell types; effect and mechanism of exogenous HA on periodontal ligament (PDL) cells is less clear. Herein, we examine the effect of exogenous HA on contractility and migration in human and murine PDL cells using arrays of microposts and time-lapse microscopy. Our findings observed HA-treated human PDL cells as more contractile and less migratory than untreated cells. Moreover, the effect of HA on contractility and focal adhesion area was abrogated when PDL cells were treated with Y27632, an inhibitor of rho-dependent kinase, but not when these cells were treated with ML-7, an inhibitor of myosin light chain kinase. Our results provide insight into the mechanobiology of PDL cells, which may contribute towards the development of therapeutic strategies for periodontal healing and tissue regeneration.</p>","PeriodicalId":9680,"journal":{"name":"Cell Adhesion & Migration","volume":"13 1","pages":"138-150"},"PeriodicalIF":3.3000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/19336918.2019.1568140","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Adhesion & Migration","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/19336918.2019.1568140","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2019/2/8 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 12

Abstract

The role of hyaluronan (HA) in periodontal healing has been speculated via its interaction with the CD44 receptor. While HA-CD44 interactions have previously been implicated in numerous cell types; effect and mechanism of exogenous HA on periodontal ligament (PDL) cells is less clear. Herein, we examine the effect of exogenous HA on contractility and migration in human and murine PDL cells using arrays of microposts and time-lapse microscopy. Our findings observed HA-treated human PDL cells as more contractile and less migratory than untreated cells. Moreover, the effect of HA on contractility and focal adhesion area was abrogated when PDL cells were treated with Y27632, an inhibitor of rho-dependent kinase, but not when these cells were treated with ML-7, an inhibitor of myosin light chain kinase. Our results provide insight into the mechanobiology of PDL cells, which may contribute towards the development of therapeutic strategies for periodontal healing and tissue regeneration.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
透明质酸- cd44相互作用介导牙周韧带细胞的收缩和迁移。
透明质酸(HA)在牙周愈合中的作用已经通过其与CD44受体的相互作用进行了推测。虽然HA-CD44相互作用先前涉及许多细胞类型;外源性HA对牙周韧带(PDL)细胞的影响及其机制尚不清楚。在这里,我们使用微柱阵列和延时显微镜检查外源性HA对人和鼠PDL细胞收缩性和迁移的影响。我们的发现观察到ha处理的人PDL细胞比未处理的细胞更具收缩性和更少的迁移。此外,用rho依赖性激酶抑制剂Y27632处理PDL细胞时,HA对收缩性和局灶黏附面积的影响被消除,但用肌球蛋白轻链激酶抑制剂ML-7处理PDL细胞时,HA对收缩性和局灶黏附面积的影响没有被消除。我们的研究结果提供了对PDL细胞的机械生物学的深入了解,这可能有助于牙周愈合和组织再生的治疗策略的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.40
自引率
0.00%
发文量
7
审稿时长
53 weeks
期刊介绍: Cell Adhesion & Migration is a multi-disciplinary, peer reviewed open access journal that focuses on the biological or pathological implications of cell-cell and cell-microenvironment interactions. The main focus of this journal is fundamental science. The journal strives to serve a broad readership by regularly publishing review articles covering specific disciplines within the field, and by publishing focused issues that provide an overview on specific topics of interest within the field. Cell Adhesion & Migration publishes relevant and timely original research, as well as authoritative overviews, commentaries, and perspectives, providing context for the work presented in Cell Adhesion & Migration and for key results published elsewhere. Original research papers may cover all topics important in the field of cell-cell and cell-matrix interactions. Cell Adhesion & Migration also publishes articles related to cell biomechanics, biomaterial, and development of related imaging technologies.
期刊最新文献
Orosomucoid 1 interacts with S100A12 and activates ERK signalling to expedite the advancement of bladder cancer. Knockdown of HGH1 in breast cancer cell lines can inhibit the viability, invasion and migration of tumor cells. JNK3 inhibitors as promising pharmaceuticals with neuroprotective properties. Copine C plays a role in adhesion and streaming in Dictyostelium. Elucidating the role of MICAL1 in pan-cancer using integrated bioinformatics and experimental approaches.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1