Stacked Deconvolutional Network for Semantic Segmentation.

IF 10.8 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE IEEE Transactions on Image Processing Pub Date : 2019-01-25 DOI:10.1109/TIP.2019.2895460
Jun Fu, Jing Liu, Yuhang Wang, Jin Zhou, Changyong Wang, Hanqing Lu
{"title":"Stacked Deconvolutional Network for Semantic Segmentation.","authors":"Jun Fu, Jing Liu, Yuhang Wang, Jin Zhou, Changyong Wang, Hanqing Lu","doi":"10.1109/TIP.2019.2895460","DOIUrl":null,"url":null,"abstract":"<p><p>Recent progress in semantic segmentation has been driven by improving the spatial resolution under Fully Convolutional Networks (FCNs). To address this problem, we propose a Stacked Deconvolutional Network (SDN) for semantic segmentation. In SDN, multiple shallow deconvolutional networks, which are called as SDN units, are stacked one by one to integrate contextual information and bring the fine recovery of localization information. Meanwhile, inter-unit and intra-unit connections are designed to assist network training and enhance feature fusion since the connections improve the flow of information and gradient propagation throughout the network. Besides, hierarchical supervision is applied during the upsampling process of each SDN unit, which enhances the discrimination of feature representations and benefits the network optimization. We carry out comprehensive experiments and achieve the new state-ofthe- art results on four datasets, including PASCAL VOC 2012, CamVid, GATECH, COCO Stuff. In particular, our best model without CRF post-processing achieves an intersection-over-union score of 86.6% in the test set.</p>","PeriodicalId":13217,"journal":{"name":"IEEE Transactions on Image Processing","volume":" ","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2019-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Image Processing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/TIP.2019.2895460","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Recent progress in semantic segmentation has been driven by improving the spatial resolution under Fully Convolutional Networks (FCNs). To address this problem, we propose a Stacked Deconvolutional Network (SDN) for semantic segmentation. In SDN, multiple shallow deconvolutional networks, which are called as SDN units, are stacked one by one to integrate contextual information and bring the fine recovery of localization information. Meanwhile, inter-unit and intra-unit connections are designed to assist network training and enhance feature fusion since the connections improve the flow of information and gradient propagation throughout the network. Besides, hierarchical supervision is applied during the upsampling process of each SDN unit, which enhances the discrimination of feature representations and benefits the network optimization. We carry out comprehensive experiments and achieve the new state-ofthe- art results on four datasets, including PASCAL VOC 2012, CamVid, GATECH, COCO Stuff. In particular, our best model without CRF post-processing achieves an intersection-over-union score of 86.6% in the test set.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于语义分割的堆叠去卷积网络
最近在语义分割领域取得的进展主要是通过提高全卷积网络(FCN)的空间分辨率来实现的。为了解决这个问题,我们提出了一种用于语义分割的堆叠去卷积网络(SDN)。在 SDN 中,多个浅层去卷积网络(称为 SDN 单元)被逐个堆叠,以整合上下文信息,实现定位信息的精细恢复。同时,由于单元间和单元内的连接可以改善整个网络的信息流和梯度传播,因此设计了单元间和单元内的连接来帮助网络训练和增强特征融合。此外,在每个 SDN 单元的上采样过程中应用了分层监督,这增强了特征表示的辨别能力,有利于网络优化。我们在四个数据集(包括 PASCAL VOC 2012、CamVid、GATECH 和 COCO Stuff)上进行了全面实验,并取得了最新成果。其中,我们的最佳模型在测试集中的交集大于联合得分率达到了 86.6%,而没有经过 CRF 后处理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Image Processing
IEEE Transactions on Image Processing 工程技术-工程:电子与电气
CiteScore
20.90
自引率
6.60%
发文量
774
审稿时长
7.6 months
期刊介绍: The IEEE Transactions on Image Processing delves into groundbreaking theories, algorithms, and structures concerning the generation, acquisition, manipulation, transmission, scrutiny, and presentation of images, video, and multidimensional signals across diverse applications. Topics span mathematical, statistical, and perceptual aspects, encompassing modeling, representation, formation, coding, filtering, enhancement, restoration, rendering, halftoning, search, and analysis of images, video, and multidimensional signals. Pertinent applications range from image and video communications to electronic imaging, biomedical imaging, image and video systems, and remote sensing.
期刊最新文献
GeodesicPSIM: Predicting the Quality of Static Mesh with Texture Map via Geodesic Patch Similarity A Versatile Framework for Unsupervised Domain Adaptation based on Instance Weighting Revisiting Domain-Adaptive Semantic Segmentation via Knowledge Distillation RegSeg: An End-to-End Network for Multimodal RGB-Thermal Registration and Semantic Segmentation Salient Object Detection in RGB-D Videos
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1