Emerging Players in Autophagy Deficiency-Induced Liver Injury and Tumorigenesis.

Q2 Biochemistry, Genetics and Molecular Biology Gene expression Pub Date : 2019-11-04 Epub Date: 2019-01-28 DOI:10.3727/105221619X15486875608177
Hua Yang, Hong-Min Ni, Wen-Xing Ding
{"title":"Emerging Players in Autophagy Deficiency-Induced Liver Injury and Tumorigenesis.","authors":"Hua Yang,&nbsp;Hong-Min Ni,&nbsp;Wen-Xing Ding","doi":"10.3727/105221619X15486875608177","DOIUrl":null,"url":null,"abstract":"<p><p>Studies using genetic mouse models that have defective autophagy have led to the conclusion that macroautophagy/autophagy serves as a tumor suppressor. One of such models is the liver-specific Atg5 or Atg7 knockout mice, and these knockout mice develop spontaneous liver tumors. It has been generally agreed that p62-mediated Nrf2 activation plays a critical role in promoting autophagy deficiency-induced liver injury and liver tumorigenesis. The mechanisms of how persistent Nrf2 activation induces liver injury and tumorigenesis are incompletely known. We discuss the recent progress on the new roles of HMGB1 and Yap in regulating liver injury and tumorigenesis in mice with liver-specific autophagy deficiency.</p>","PeriodicalId":12502,"journal":{"name":"Gene expression","volume":"19 3","pages":"229-234"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3727/105221619X15486875608177","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gene expression","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3727/105221619X15486875608177","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2019/1/28 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 11

Abstract

Studies using genetic mouse models that have defective autophagy have led to the conclusion that macroautophagy/autophagy serves as a tumor suppressor. One of such models is the liver-specific Atg5 or Atg7 knockout mice, and these knockout mice develop spontaneous liver tumors. It has been generally agreed that p62-mediated Nrf2 activation plays a critical role in promoting autophagy deficiency-induced liver injury and liver tumorigenesis. The mechanisms of how persistent Nrf2 activation induces liver injury and tumorigenesis are incompletely known. We discuss the recent progress on the new roles of HMGB1 and Yap in regulating liver injury and tumorigenesis in mice with liver-specific autophagy deficiency.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
自噬缺陷诱导的肝损伤和肿瘤发生的新参与者。
利用自噬缺陷的遗传小鼠模型进行的研究得出了巨噬/自噬作为肿瘤抑制因子的结论。其中一种模型是肝脏特异性Atg5或Atg7敲除小鼠,这些敲除小鼠会发生自发性肝脏肿瘤。人们普遍认为p62介导的Nrf2激活在促进自噬缺陷诱导的肝损伤和肝肿瘤发生中起关键作用。持续Nrf2激活诱导肝损伤和肿瘤发生的机制尚不完全清楚。本文就HMGB1和Yap在调节肝脏特异性自噬缺乏症小鼠肝损伤和肿瘤发生中的新作用的研究进展进行了综述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Gene expression
Gene expression 生物-生物工程与应用微生物
CiteScore
3.80
自引率
0.00%
发文量
3
审稿时长
>12 weeks
期刊介绍: Gene Expression, The Journal of Liver Research will publish articles in all aspects of hepatology. Hepatology, as a research discipline, has seen unprecedented growth especially in the cellular and molecular mechanisms of hepatic health and disease, which continues to have a major impact on understanding liver development, stem cells, carcinogenesis, tissue engineering, injury, repair, regeneration, immunology, metabolism, fibrosis, and transplantation. Continued research and improved understanding in these areas will have a meaningful impact on liver disease prevention, diagnosis, and treatment. The existing journal Gene Expression has expanded its focus to become Gene Expression, The Journal of Liver Research to meet this growing demand. In its revised and expanded scope, the journal will publish high-impact original articles, reviews, short but complete articles, and special articles (editorials, commentaries, opinions) on all aspects of hepatology, making it a unique and invaluable resource for readers interested in this field. The expanded team, led by an Editor-in-Chief who is uniquely qualified and a renowned expert, along with a dynamic and functional editorial board, is determined to make this a premier journal in the field of hepatology.
期刊最新文献
Gene Expression Analysis Reveals Clinically Significant Genes Associated with Familial Hypercholesterolemia and Atherosclerosis Acute Myeloid Leukemia with Myelodysplasia-related Cytogenetic/Genetic-defined Abnormalities Masquerades as Acute Undifferentiated Leukemia Potential Epigenetic Modifiers Targeting the Alteration of Methylation in Colorectal Cancer (Epi)genetic Aspects of Metabolic Syndrome Pathogenesis in Relation to Brain-derived Neurotrophic Factor Expression: A Review Non-coding RNA and Atherosclerosis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1