Biosynthesis and accumulation of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)-polyethylene glycol, a hybrid co-polymer by endophytic Bacillus cereus RCL 02.
{"title":"Biosynthesis and accumulation of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)-polyethylene glycol, a hybrid co-polymer by endophytic Bacillus cereus RCL 02.","authors":"Rituparna Das, Arundhati Pal, A K Paul","doi":"10.1007/s00449-019-02084-y","DOIUrl":null,"url":null,"abstract":"<p><p>Co-polymerization of microbial polyesters, polyhydroxyalkanoates (PHAs), with synthetic polymers has become an established and promising tool in the recent past for improving the material and biological properties of the biopolyesters. Bacillus cereus RCL 02, a leaf endophytic bacterium of the oleaginous plant Ricinus communis L., has been reported to produce a significant amount of poly(3-hydroxybutyrate) [P(3HB)] and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV)] under batch cultivation. The present study demonstrates the synthesis and accumulation of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)-polyethylene glycol [P(3HB-co-3HV)-PEG] co-polymer by the isolate RCL 02 in glucose, valeric acid, and PEG-200 supplemented mineral salts medium following dual-step cultivation. The identity of P(3HB-co-3HV)-PEG co-polymer so produced has been confirmed by X-ray diffraction (XRD) analysis, Fourier-transform infrared (FTIR), and proton nuclear magnetic resonance (<sup>1</sup>H NMR) spectroscopic studies, and the purified co-polymer was found to be composed of 3.2 mol% ethylene glycol (EG) and 8.4 mol% 3HV along with 3HB. While the thermogravimetric analysis (TGA) revealed that P(3HB-co-3HV)-PEG films degraded at 269.32 °C, differential scanning calorimetry (DSC) recorded the melting peak of the co-polymer at 163.8 °C. This study emphasized to explore the endophytic Bacillus spp. for production of P(3HB-co-3HV)-PEG co-polymers with improved material properties which may find possible application for biomedical purposes.</p>","PeriodicalId":9024,"journal":{"name":"Bioprocess and Biosystems Engineering","volume":"42 5","pages":"807-815"},"PeriodicalIF":3.5000,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s00449-019-02084-y","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioprocess and Biosystems Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00449-019-02084-y","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2019/2/1 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 3
Abstract
Co-polymerization of microbial polyesters, polyhydroxyalkanoates (PHAs), with synthetic polymers has become an established and promising tool in the recent past for improving the material and biological properties of the biopolyesters. Bacillus cereus RCL 02, a leaf endophytic bacterium of the oleaginous plant Ricinus communis L., has been reported to produce a significant amount of poly(3-hydroxybutyrate) [P(3HB)] and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV)] under batch cultivation. The present study demonstrates the synthesis and accumulation of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)-polyethylene glycol [P(3HB-co-3HV)-PEG] co-polymer by the isolate RCL 02 in glucose, valeric acid, and PEG-200 supplemented mineral salts medium following dual-step cultivation. The identity of P(3HB-co-3HV)-PEG co-polymer so produced has been confirmed by X-ray diffraction (XRD) analysis, Fourier-transform infrared (FTIR), and proton nuclear magnetic resonance (1H NMR) spectroscopic studies, and the purified co-polymer was found to be composed of 3.2 mol% ethylene glycol (EG) and 8.4 mol% 3HV along with 3HB. While the thermogravimetric analysis (TGA) revealed that P(3HB-co-3HV)-PEG films degraded at 269.32 °C, differential scanning calorimetry (DSC) recorded the melting peak of the co-polymer at 163.8 °C. This study emphasized to explore the endophytic Bacillus spp. for production of P(3HB-co-3HV)-PEG co-polymers with improved material properties which may find possible application for biomedical purposes.
期刊介绍:
Bioprocess and Biosystems Engineering provides an international peer-reviewed forum to facilitate the discussion between engineering and biological science to find efficient solutions in the development and improvement of bioprocesses. The aim of the journal is to focus more attention on the multidisciplinary approaches for integrative bioprocess design. Of special interest are the rational manipulation of biosystems through metabolic engineering techniques to provide new biocatalysts as well as the model based design of bioprocesses (up-stream processing, bioreactor operation and downstream processing) that will lead to new and sustainable production processes.
Contributions are targeted at new approaches for rational and evolutive design of cellular systems by taking into account the environment and constraints of technical production processes, integration of recombinant technology and process design, as well as new hybrid intersections such as bioinformatics and process systems engineering. Manuscripts concerning the design, simulation, experimental validation, control, and economic as well as ecological evaluation of novel processes using biosystems or parts thereof (e.g., enzymes, microorganisms, mammalian cells, plant cells, or tissue), their related products, or technical devices are also encouraged.
The Editors will consider papers for publication based on novelty, their impact on biotechnological production and their contribution to the advancement of bioprocess and biosystems engineering science. Submission of papers dealing with routine aspects of bioprocess engineering (e.g., routine application of established methodologies, and description of established equipment) are discouraged.