Altug Kucukgul, Mehmet M Isgor, Vesile Duzguner, Meryem N Atabay, Azime Kucukgul
{"title":"Antioxidant Effects of Oleuropein on Hydrogen Peroxide-Induced Neuronal Stress- An <i>In Vitro</i> Study.","authors":"Altug Kucukgul, Mehmet M Isgor, Vesile Duzguner, Meryem N Atabay, Azime Kucukgul","doi":"10.2174/1871523018666190201145824","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Persistent oxidative stress can lead to chronic inflammation and mediate most chronic diseases including neurological disorders. Oleuropein has been shown to be a potent antioxidant molecule in olive oil leaf having antioxidative properties.</p><p><strong>Objective: </strong>The aim of this study was to investigate the protective effects of oleuropein against oxidative stress in human glioblastoma cells.</p><p><strong>Methods: </strong>Human glioblastoma cells (U87) were pretreated with oleuropein (OP) essential oil 10 µM. After 30 minutes, 100 µM H2O2 was added to the cells for three hours. Cell survival was quantified by colorimetric MTT assay. Glutathione level, total oxidant capacity, total antioxidant capacity and nitric oxide levels were determined by using specific spectrophotometric methods. The relative gene expression level of iNOS was performed by qRT-PCR method.</p><p><strong>Results: </strong>According to viability results, the effective concentration of H2O2 (100µM) significantly decreased cell viability and oleuropein pretreatment significantly prevented the cell losses. Oleuropein regenerated total antioxidant capacity and glutathione levels decreased by H2O2 exposure. In addition, nitric oxide and total oxidant capacity levels were also decreased after administration of oleuropein in treated cells.</p><p><strong>Conclusion: </strong>Oleuropein was found to have potent antioxidative properties in human glioblastoma cells. However, further studies and validations are needed in order to understand the exact neuroprotective mechanism of oleuropein.</p>","PeriodicalId":35423,"journal":{"name":"Anti-Inflammatory and Anti-Allergy Agents in Medicinal Chemistry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2174/1871523018666190201145824","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anti-Inflammatory and Anti-Allergy Agents in Medicinal Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/1871523018666190201145824","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 10
Abstract
Background: Persistent oxidative stress can lead to chronic inflammation and mediate most chronic diseases including neurological disorders. Oleuropein has been shown to be a potent antioxidant molecule in olive oil leaf having antioxidative properties.
Objective: The aim of this study was to investigate the protective effects of oleuropein against oxidative stress in human glioblastoma cells.
Methods: Human glioblastoma cells (U87) were pretreated with oleuropein (OP) essential oil 10 µM. After 30 minutes, 100 µM H2O2 was added to the cells for three hours. Cell survival was quantified by colorimetric MTT assay. Glutathione level, total oxidant capacity, total antioxidant capacity and nitric oxide levels were determined by using specific spectrophotometric methods. The relative gene expression level of iNOS was performed by qRT-PCR method.
Results: According to viability results, the effective concentration of H2O2 (100µM) significantly decreased cell viability and oleuropein pretreatment significantly prevented the cell losses. Oleuropein regenerated total antioxidant capacity and glutathione levels decreased by H2O2 exposure. In addition, nitric oxide and total oxidant capacity levels were also decreased after administration of oleuropein in treated cells.
Conclusion: Oleuropein was found to have potent antioxidative properties in human glioblastoma cells. However, further studies and validations are needed in order to understand the exact neuroprotective mechanism of oleuropein.
期刊介绍:
Anti-Inflammatory & Anti-Allergy Agents in Medicinal Chemistry aims to cover all the latest and outstanding developments in medicinal chemistry and rational drug design for the discovery of new anti-inflammatory & anti-allergy agents. Publishing a series of timely in-depth reviews written by leaders in the field covering a range of current topics, Anti-Inflammatory & Anti-Allergy Agents in Medicinal Chemistry is an essential journal for every medicinal chemist who wishes to be kept informed and up-to-date with the latest and most important developments in the field.