Fluid shear stress induces cell migration and invasion via activating autophagy in HepG2 cells.

IF 3.3 3区 生物学 Q3 CELL BIOLOGY Cell Adhesion & Migration Pub Date : 2019-12-01 Epub Date: 2019-01-31 DOI:10.1080/19336918.2019.1568141
Zhiping Yan, Guanyue Su, Wenbo Gao, Jia He, Yang Shen, Ye Zeng, Xiaoheng Liu
{"title":"Fluid shear stress induces cell migration and invasion via activating autophagy in HepG2 cells.","authors":"Zhiping Yan,&nbsp;Guanyue Su,&nbsp;Wenbo Gao,&nbsp;Jia He,&nbsp;Yang Shen,&nbsp;Ye Zeng,&nbsp;Xiaoheng Liu","doi":"10.1080/19336918.2019.1568141","DOIUrl":null,"url":null,"abstract":"<p><p>Fluid shear stress (FSS) regulates the metastasis of hepatocellular carcinoma (HCC). In the present study, we aimed to study the role of autophagy in HCC cells under FSS. The results showed that FSS upregulated the protein markers of autophagy, induced LC3B aggregation and formation of autophagosomes. Inhibition of integrin by Cliengitide (Cli) or inhibition of the microfilaments formation both inhibited the activation of autophagy in HepG2 under FSS. In addition, Cli inhibited the microfilaments formation and expressions of Rac1 and RhoA in HepG2 cells under FSS. Finally, inhibition of autophagy suppressed the cell migration and invasion in HepG2 under FSS. In conclusion, FSS induced autophagy to promote migration and invasion of HepG2 cells via integrin/cytoskeleton pathways.</p>","PeriodicalId":9680,"journal":{"name":"Cell Adhesion & Migration","volume":"13 1","pages":"152-163"},"PeriodicalIF":3.3000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/19336918.2019.1568141","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Adhesion & Migration","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/19336918.2019.1568141","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2019/1/31 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 25

Abstract

Fluid shear stress (FSS) regulates the metastasis of hepatocellular carcinoma (HCC). In the present study, we aimed to study the role of autophagy in HCC cells under FSS. The results showed that FSS upregulated the protein markers of autophagy, induced LC3B aggregation and formation of autophagosomes. Inhibition of integrin by Cliengitide (Cli) or inhibition of the microfilaments formation both inhibited the activation of autophagy in HepG2 under FSS. In addition, Cli inhibited the microfilaments formation and expressions of Rac1 and RhoA in HepG2 cells under FSS. Finally, inhibition of autophagy suppressed the cell migration and invasion in HepG2 under FSS. In conclusion, FSS induced autophagy to promote migration and invasion of HepG2 cells via integrin/cytoskeleton pathways.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
流体剪切应力通过激活HepG2细胞的自噬诱导细胞迁移和侵袭。
流体剪切应力(FSS)调控肝细胞癌(HCC)的转移。在本研究中,我们旨在研究FSS作用下自噬在HCC细胞中的作用。结果表明,FSS上调自噬蛋白标志物,诱导LC3B聚集,形成自噬小体。Cliengitide (Cli)抑制整合素或抑制微丝形成均可抑制FSS作用下HepG2细胞自噬的激活。此外,Cli抑制了FSS下HepG2细胞微丝的形成以及Rac1和RhoA的表达。最后,抑制自噬抑制了FSS作用下HepG2细胞的迁移和侵袭。综上所述,FSS诱导自噬通过整合素/细胞骨架通路促进HepG2细胞的迁移和侵袭。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.40
自引率
0.00%
发文量
7
审稿时长
53 weeks
期刊介绍: Cell Adhesion & Migration is a multi-disciplinary, peer reviewed open access journal that focuses on the biological or pathological implications of cell-cell and cell-microenvironment interactions. The main focus of this journal is fundamental science. The journal strives to serve a broad readership by regularly publishing review articles covering specific disciplines within the field, and by publishing focused issues that provide an overview on specific topics of interest within the field. Cell Adhesion & Migration publishes relevant and timely original research, as well as authoritative overviews, commentaries, and perspectives, providing context for the work presented in Cell Adhesion & Migration and for key results published elsewhere. Original research papers may cover all topics important in the field of cell-cell and cell-matrix interactions. Cell Adhesion & Migration also publishes articles related to cell biomechanics, biomaterial, and development of related imaging technologies.
期刊最新文献
Orosomucoid 1 interacts with S100A12 and activates ERK signalling to expedite the advancement of bladder cancer. Knockdown of HGH1 in breast cancer cell lines can inhibit the viability, invasion and migration of tumor cells. JNK3 inhibitors as promising pharmaceuticals with neuroprotective properties. Copine C plays a role in adhesion and streaming in Dictyostelium. Elucidating the role of MICAL1 in pan-cancer using integrated bioinformatics and experimental approaches.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1