{"title":"Molecular interactions between pre-formed metal nanoparticles and graphene families.","authors":"Serena Low, Young-Seok Shon","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Two dimensional (2D) atomic layered nanomaterials exhibit some of the most striking phenomena in modern materials research and hold promise for a wide range of applications including energy and biomedical technologies. Graphene has received much attention for having extremely high surface area to mass ratio and excellent electric conductivity. Graphene has also been shown to maximize the activity of surface-assembled metal nanoparticle catalysts due to its unique characteristics of enhancing mass transport of reactants to catalysts. This paper specifically investigates the strategy of pre-formed nanoparticle self-assembly used for the formation of various metal nanoparticles supported on graphene families such as graphene, graphene oxide, and reduced graphene oxide and aims at understanding the interactions between ligand-capped metal nanoparticles and 2D nanomaterials. By varying the functional groups on the ligands between alkyl, aromatic, amine, and alcohol groups, different interactions such as van der Waals, π-π stacking, dipole-dipole, and hydrogen bonding are formed as the 2D hybrids produced.</p>","PeriodicalId":54268,"journal":{"name":"Advances in Nano Research","volume":"6 4","pages":"357-375"},"PeriodicalIF":4.3000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6363346/pdf/nihms-1005663.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Nano Research","FirstCategoryId":"88","ListUrlMain":"","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Two dimensional (2D) atomic layered nanomaterials exhibit some of the most striking phenomena in modern materials research and hold promise for a wide range of applications including energy and biomedical technologies. Graphene has received much attention for having extremely high surface area to mass ratio and excellent electric conductivity. Graphene has also been shown to maximize the activity of surface-assembled metal nanoparticle catalysts due to its unique characteristics of enhancing mass transport of reactants to catalysts. This paper specifically investigates the strategy of pre-formed nanoparticle self-assembly used for the formation of various metal nanoparticles supported on graphene families such as graphene, graphene oxide, and reduced graphene oxide and aims at understanding the interactions between ligand-capped metal nanoparticles and 2D nanomaterials. By varying the functional groups on the ligands between alkyl, aromatic, amine, and alcohol groups, different interactions such as van der Waals, π-π stacking, dipole-dipole, and hydrogen bonding are formed as the 2D hybrids produced.
期刊介绍:
The Journal of Advances in Nano Research is an international and interdisciplinary peer reviewed journal. The journal aims to integrate high quality contributions from scientists and engineers alike into a single source of information that serves broad scientific audience. The journal publishes original full research articles, short communications for rapid print of research findings, and review articles. The Journal will also print special reports that feature recent discoveries with potential impact or commentary on a state-of-the-art contribution reported in the scientific literature. The journal anticipates contributions in the synthesis, fabrication, characterization and applications of nanomaterials and nanosystems, molecular simulations and nano-x (nanophysics, nanochemistry, nanotubes, nanobiotechnology, nanomedicine, nanoptics, nanoelectronics, nanomachines/nanodevices, nanocatalysis, nanocomposites, nanomechanics/nanofluidics, etc.)