Two dimensional (2D) atomic layered nanomaterials exhibit some of the most striking phenomena in modern materials research and hold promise for a wide range of applications including energy and biomedical technologies. Graphene has received much attention for having extremely high surface area to mass ratio and excellent electric conductivity. Graphene has also been shown to maximize the activity of surface-assembled metal nanoparticle catalysts due to its unique characteristics of enhancing mass transport of reactants to catalysts. This paper specifically investigates the strategy of pre-formed nanoparticle self-assembly used for the formation of various metal nanoparticles supported on graphene families such as graphene, graphene oxide, and reduced graphene oxide and aims at understanding the interactions between ligand-capped metal nanoparticles and 2D nanomaterials. By varying the functional groups on the ligands between alkyl, aromatic, amine, and alcohol groups, different interactions such as van der Waals, π-π stacking, dipole-dipole, and hydrogen bonding are formed as the 2D hybrids produced.