Minky Son, Chanin Park, Shailima Rampogu, Amir Zeb, Keun Woo Lee
{"title":"Discovery of Novel Acetylcholinesterase Inhibitors as Potential Candidates for the Treatment of Alzheimer's Disease.","authors":"Minky Son, Chanin Park, Shailima Rampogu, Amir Zeb, Keun Woo Lee","doi":"10.3390/ijms20041000","DOIUrl":null,"url":null,"abstract":"<p><p>Acetylcholinesterase (AChE) catalyzes the hydrolysis of neurotransmitter acetylcholine to acetate and choline in a synaptic cleft. Deficits in cholinergic neurotransmitters are linked closely with the progression of Alzheimer's disease (AD), which is a neurodegenerative disorder characterized by memory impairment, and a disordered cognitive function. Since the previously approved AChE inhibitors, donepezil (Aricept), galantamine (Reminyl), and rivastigmine (Exelon), have side effects and several studies are being carried out out to develop novel AD drugs, we have applied a three-dimensional quantitative structure-activity relationship (3D QSAR) and structure-based pharmacophore modeling methodologies to identify potential candidate inhibitors against AChE. Herein, 3D QSAR and structure-based pharmacophore models were built from known inhibitors and crystal structures of human AChE in complex with donepezil, galantamine, huperzine A, and huprine W, respectively. The generated models were used as 3D queries to screen new scaffolds from various chemical databases. The hit compounds obtained from the virtual screening were subjected to an assessment of drug-like properties, followed by molecular docking. The final hit compounds were selected based on binding modes and molecular interactions in the active site of the enzyme. Furthermore, molecular dynamics simulations for AChE in complex with the final hits were performed to evaluate that they maintained stable interactions with the active site residues. The binding free energies of the final hits were also calculated using molecular mechanics/Poisson-Boltzmann surface area method. Taken together, we proposed that these hits can be promising candidates for anti-AD drugs.</p>","PeriodicalId":49179,"journal":{"name":"International Journal of Molecular Sciences","volume":"20 4","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2019-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3390/ijms20041000","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Molecular Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/ijms20041000","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 25
Abstract
Acetylcholinesterase (AChE) catalyzes the hydrolysis of neurotransmitter acetylcholine to acetate and choline in a synaptic cleft. Deficits in cholinergic neurotransmitters are linked closely with the progression of Alzheimer's disease (AD), which is a neurodegenerative disorder characterized by memory impairment, and a disordered cognitive function. Since the previously approved AChE inhibitors, donepezil (Aricept), galantamine (Reminyl), and rivastigmine (Exelon), have side effects and several studies are being carried out out to develop novel AD drugs, we have applied a three-dimensional quantitative structure-activity relationship (3D QSAR) and structure-based pharmacophore modeling methodologies to identify potential candidate inhibitors against AChE. Herein, 3D QSAR and structure-based pharmacophore models were built from known inhibitors and crystal structures of human AChE in complex with donepezil, galantamine, huperzine A, and huprine W, respectively. The generated models were used as 3D queries to screen new scaffolds from various chemical databases. The hit compounds obtained from the virtual screening were subjected to an assessment of drug-like properties, followed by molecular docking. The final hit compounds were selected based on binding modes and molecular interactions in the active site of the enzyme. Furthermore, molecular dynamics simulations for AChE in complex with the final hits were performed to evaluate that they maintained stable interactions with the active site residues. The binding free energies of the final hits were also calculated using molecular mechanics/Poisson-Boltzmann surface area method. Taken together, we proposed that these hits can be promising candidates for anti-AD drugs.
期刊介绍:
The International Journal of Molecular Sciences (ISSN 1422-0067) provides an advanced forum for chemistry, molecular physics (chemical physics and physical chemistry) and molecular biology. It publishes research articles, reviews, communications and short notes. Our aim is to encourage scientists to publish their theoretical and experimental results in as much detail as possible. Therefore, there is no restriction on the length of the papers or the number of electronics supplementary files. For articles with computational results, the full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material (including animated pictures, videos, interactive Excel sheets, software executables and others).