Dexterous Hand Movements and Their Recovery After Central Nervous System Injury.

IF 12.1 1区 医学 Q1 NEUROSCIENCES Annual review of neuroscience Pub Date : 2019-07-08 Epub Date: 2019-04-02 DOI:10.1146/annurev-neuro-070918-050436
Tadashi Isa
{"title":"Dexterous Hand Movements and Their Recovery After Central Nervous System Injury.","authors":"Tadashi Isa","doi":"10.1146/annurev-neuro-070918-050436","DOIUrl":null,"url":null,"abstract":"<p><p>Hand dexterity has uniquely developed in higher primates and is thought to rely on the direct corticomotoneuronal (CM) pathway. Recent studies have shown that rodents and carnivores lack the direct CM pathway but can control certain levels of dexterous hand movements through various indirect CM pathways. Some homologous pathways also exist in higher primates, and among them, propriospinal (PrS) neurons in the mid-cervical segments (C3-C4) are significantly involved in hand dexterity. When the direct CM pathway was lesioned caudal to the PrS and transmission of cortical commands to hand motoneurons via the PrS neurons remained intact, dexterous hand movements could be significantly recovered. This recovery model was intensively studied, and it was found that, in addition to the compensation by the PrS neurons, a large-scale reorganization in the bilateral cortical motor-related areas and mesolimbic structures contributed to recovery. Future therapeutic strategies should target these multihierarchical areas.</p>","PeriodicalId":8008,"journal":{"name":"Annual review of neuroscience","volume":"42 ","pages":"315-335"},"PeriodicalIF":12.1000,"publicationDate":"2019-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1146/annurev-neuro-070918-050436","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1146/annurev-neuro-070918-050436","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2019/4/2 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 22

Abstract

Hand dexterity has uniquely developed in higher primates and is thought to rely on the direct corticomotoneuronal (CM) pathway. Recent studies have shown that rodents and carnivores lack the direct CM pathway but can control certain levels of dexterous hand movements through various indirect CM pathways. Some homologous pathways also exist in higher primates, and among them, propriospinal (PrS) neurons in the mid-cervical segments (C3-C4) are significantly involved in hand dexterity. When the direct CM pathway was lesioned caudal to the PrS and transmission of cortical commands to hand motoneurons via the PrS neurons remained intact, dexterous hand movements could be significantly recovered. This recovery model was intensively studied, and it was found that, in addition to the compensation by the PrS neurons, a large-scale reorganization in the bilateral cortical motor-related areas and mesolimbic structures contributed to recovery. Future therapeutic strategies should target these multihierarchical areas.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
中枢神经系统损伤后灵巧手运动及其恢复。
手的灵巧性在高等灵长类动物中得到了独特的发展,并且被认为依赖于直接的皮质神经元(CM)途径。最近的研究表明,啮齿动物和食肉动物缺乏直接的手控通路,但可以通过各种间接的手控通路控制一定程度的灵巧手运动。在高等灵长类动物中也存在一些同源通路,其中位于颈中节段(C3-C4)的本体脊髓(PrS)神经元显著参与手灵巧性。当直接CM通路损伤后,皮质指令通过pr神经元传递到手部运动神经元时,可以明显恢复灵巧的手部运动。我们对这种恢复模式进行了深入的研究,发现除了PrS神经元的代偿外,双侧皮质运动相关区和中边缘结构的大规模重组也有助于恢复。未来的治疗策略应该针对这些多层次的领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Annual review of neuroscience
Annual review of neuroscience 医学-神经科学
CiteScore
25.30
自引率
0.70%
发文量
29
期刊介绍: The Annual Review of Neuroscience is a well-established and comprehensive journal in the field of neuroscience, with a rich history and a commitment to open access and scholarly communication. The journal has been in publication since 1978, providing a long-standing source of authoritative reviews in neuroscience. The Annual Review of Neuroscience encompasses a wide range of topics within neuroscience, including but not limited to: Molecular and cellular neuroscience, Neurogenetics, Developmental neuroscience, Neural plasticity and repair, Systems neuroscience, Cognitive neuroscience, Behavioral neuroscience, Neurobiology of disease. Occasionally, the journal also features reviews on the history of neuroscience and ethical considerations within the field.
期刊最新文献
Circuit Modules for Flexible Locomotion. Adaptive Cost-Benefit Control Fueled by Striatal Dopamine. A Whole-Brain Topographic Ontology. Harmony in the Molecular Orchestra of Hearing: Developmental Mechanisms from the Ear to the Brain. Circuit-Specific Deep Brain Stimulation Provides Insights into Movement Control.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1