Epigenetic Classifiers for Precision Diagnosis of Brain Tumors.

IF 3.2 Q2 GENETICS & HEREDITY Epigenetics Insights Pub Date : 2019-03-31 eCollection Date: 2019-01-01 DOI:10.1177/2516865719840284
Javier Ij Orozco, Ayla O Manughian-Peter, Matthew P Salomon, Diego M Marzese
{"title":"Epigenetic Classifiers for Precision Diagnosis of Brain Tumors.","authors":"Javier Ij Orozco,&nbsp;Ayla O Manughian-Peter,&nbsp;Matthew P Salomon,&nbsp;Diego M Marzese","doi":"10.1177/2516865719840284","DOIUrl":null,"url":null,"abstract":"<p><p>DNA methylation profiling has proven to be a powerful analytical tool, which can accurately identify the tissue of origin of a wide range of benign and malignant neoplasms. Using microarray-based profiling and supervised machine learning algorithms, we and other groups have recently unraveled DNA methylation signatures capable of aiding the histomolecular diagnosis of different tumor types. We have explored the methylomes of metastatic brain tumors from patients with lung cancer, breast cancer, and cutaneous melanoma and primary brain neoplasms to build epigenetic classifiers. Our brain metastasis methylation (BrainMETH) classifier has the ability to determine the type of brain tumor, the origin of the metastases, and the clinical-therapeutic subtype for patients with breast cancer brain metastases. To facilitate the translation of these epigenetic classifiers into clinical practice, we selected and validated the most informative genomic regions utilizing quantitative methylation-specific polymerase chain reaction (qMSP). We believe that the refinement, expansion, integration, and clinical validation of BrainMETH and other recently developed epigenetic classifiers will significantly contribute to the development of more comprehensive and accurate systems for the personalized management of patients with brain metastases.</p>","PeriodicalId":41996,"journal":{"name":"Epigenetics Insights","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2019-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/2516865719840284","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epigenetics Insights","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/2516865719840284","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2019/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 10

Abstract

DNA methylation profiling has proven to be a powerful analytical tool, which can accurately identify the tissue of origin of a wide range of benign and malignant neoplasms. Using microarray-based profiling and supervised machine learning algorithms, we and other groups have recently unraveled DNA methylation signatures capable of aiding the histomolecular diagnosis of different tumor types. We have explored the methylomes of metastatic brain tumors from patients with lung cancer, breast cancer, and cutaneous melanoma and primary brain neoplasms to build epigenetic classifiers. Our brain metastasis methylation (BrainMETH) classifier has the ability to determine the type of brain tumor, the origin of the metastases, and the clinical-therapeutic subtype for patients with breast cancer brain metastases. To facilitate the translation of these epigenetic classifiers into clinical practice, we selected and validated the most informative genomic regions utilizing quantitative methylation-specific polymerase chain reaction (qMSP). We believe that the refinement, expansion, integration, and clinical validation of BrainMETH and other recently developed epigenetic classifiers will significantly contribute to the development of more comprehensive and accurate systems for the personalized management of patients with brain metastases.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
脑肿瘤精确诊断的表观遗传分类器。
DNA甲基化谱已被证明是一种强大的分析工具,它可以准确地识别各种良性和恶性肿瘤的起源组织。利用基于微阵列的分析和监督机器学习算法,我们和其他团队最近揭示了能够帮助不同肿瘤类型的组织分子诊断的DNA甲基化特征。我们研究了肺癌、乳腺癌、皮肤黑色素瘤和原发性脑肿瘤患者转移性脑肿瘤的甲基组,以建立表观遗传分类器。我们的脑转移甲基化(BrainMETH)分类器能够确定脑肿瘤的类型、转移的起源以及乳腺癌脑转移患者的临床治疗亚型。为了便于将这些表观遗传分类器转化为临床实践,我们利用定量甲基化特异性聚合酶链反应(qMSP)选择并验证了信息量最大的基因组区域。我们相信,BrainMETH和其他最近开发的表观遗传分类器的改进、扩展、整合和临床验证将大大有助于开发更全面、更准确的系统,用于脑转移患者的个性化管理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Epigenetics Insights
Epigenetics Insights GENETICS & HEREDITY-
CiteScore
5.10
自引率
0.00%
发文量
10
审稿时长
8 weeks
期刊最新文献
Epigenetics Mechanisms of Honeybees: Secrets of Royal Jelly. Circular RNA in Multiple Sclerosis: Pathogenicity and Potential Biomarker Development: A Systematic Review. Associations Between Epigenetic Age Acceleration and microRNA Expression Among U.S. Firefighters. Subacute and Chronic Spinal Cord Injury: A Scoping Review of Epigenetics and Secondary Health Conditions. DNA Methylation in Cancer: Epigenetic View of Dietary and Lifestyle Factors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1