An Exploration Into Improving DNA Motif Inference by Looking for Highly Conserved Core Regions.

Jeffrey A Thompson, Clare Bates Congdon
{"title":"An Exploration Into Improving DNA Motif Inference by Looking for Highly Conserved Core Regions.","authors":"Jeffrey A Thompson,&nbsp;Clare Bates Congdon","doi":"10.1109/CIBCB.2013.6595389","DOIUrl":null,"url":null,"abstract":"<p><p>Although most verified functional elements in noncoding DNA contain a highly conserved core region, this concept is not generally incorporated into <i>de novo</i> motif inference systems. In this work, we explore the utility of adding the notion of conserved core regions into a comparative genomics approach for the search for putative functional elements in noncoding DNA. By modifying the scoring function for GAMI, Genetic Algorithms for Motif Inference, we investigate tradeoffs between the strength of conservation of the full motif vs. the strength of conservation of a core region. This work illustrates that incorporating information about the structure of transcription factor binding sites can be helpful in identifying biologically functional elements.</p>","PeriodicalId":89148,"journal":{"name":"IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology proceedings. IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology","volume":"2013 ","pages":"60-67"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/CIBCB.2013.6595389","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology proceedings. IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIBCB.2013.6595389","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2013/9/12 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Although most verified functional elements in noncoding DNA contain a highly conserved core region, this concept is not generally incorporated into de novo motif inference systems. In this work, we explore the utility of adding the notion of conserved core regions into a comparative genomics approach for the search for putative functional elements in noncoding DNA. By modifying the scoring function for GAMI, Genetic Algorithms for Motif Inference, we investigate tradeoffs between the strength of conservation of the full motif vs. the strength of conservation of a core region. This work illustrates that incorporating information about the structure of transcription factor binding sites can be helpful in identifying biologically functional elements.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过寻找高度保守的核心区域改进DNA基序推断的探索。
尽管非编码DNA中大多数经过验证的功能元件包含高度保守的核心区域,但这一概念通常不被纳入从头基序推断系统。在这项工作中,我们探索将保守核心区域的概念添加到比较基因组学方法中,以寻找非编码DNA中假定的功能元件。通过修改GAMI (Motif Inference遗传算法)的评分函数,我们研究了完整Motif的保守性强度与核心区域的保守性强度之间的权衡。这项工作表明,结合有关转录因子结合位点结构的信息可以帮助识别生物功能元件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Comparison tools for lncRNA identification: analysis among plants and humans Message from the conference chair Messages from the technical program chairs Side-chain flexibility in protein docking Predicting the severity of motor neuron disease progression using electronic health record data with a cloud computing Big Data approach.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1