{"title":"Development of Robust Yeast Strains for Lignocellulosic Biorefineries Based on Genome-Wide Studies.","authors":"Ming-Ming Zhang, Hong-Qi Chen, Pei-Liang Ye, Songsak Wattanachaisaereekul, Feng-Wu Bai, Xin-Qing Zhao","doi":"10.1007/978-3-030-13035-0_3","DOIUrl":null,"url":null,"abstract":"<p><p>Lignocellulosic biomass has been widely studied as the renewable feedstock for the production of biofuels and biochemicals. Budding yeast Saccharomyces cerevisiae is commonly used as a cell factory for bioconversion of lignocellulosic biomass. However, economic bioproduction using fermentable sugars released from lignocellulosic feedstocks is still challenging. Due to impaired cell viability and fermentation performance by various inhibitors that are present in the cellulosic hydrolysates, robust yeast strains resistant to various stress environments are highly desired. Here, we summarize recent progress on yeast strain development for the production of biofuels and biochemical using lignocellulosic biomass. Genome-wide studies which have contributed to the elucidation of mechanisms of yeast stress tolerance are reviewed. Key gene targets recently identified based on multiomics analysis such as transcriptomic, proteomic, and metabolomics studies are summarized. Physiological genomic studies based on zinc sulfate supplementation are highlighted, and novel zinc-responsive genes involved in yeast stress tolerance are focused. The dependence of host genetic background of yeast stress tolerance and roles of histones and their modifications are emphasized. The development of robust yeast strains based on multiomics analysis benefits economic bioconversion of lignocellulosic biomass.</p>","PeriodicalId":20880,"journal":{"name":"Progress in molecular and subcellular biology","volume":"58 ","pages":"61-83"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/978-3-030-13035-0_3","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in molecular and subcellular biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-030-13035-0_3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 7
Abstract
Lignocellulosic biomass has been widely studied as the renewable feedstock for the production of biofuels and biochemicals. Budding yeast Saccharomyces cerevisiae is commonly used as a cell factory for bioconversion of lignocellulosic biomass. However, economic bioproduction using fermentable sugars released from lignocellulosic feedstocks is still challenging. Due to impaired cell viability and fermentation performance by various inhibitors that are present in the cellulosic hydrolysates, robust yeast strains resistant to various stress environments are highly desired. Here, we summarize recent progress on yeast strain development for the production of biofuels and biochemical using lignocellulosic biomass. Genome-wide studies which have contributed to the elucidation of mechanisms of yeast stress tolerance are reviewed. Key gene targets recently identified based on multiomics analysis such as transcriptomic, proteomic, and metabolomics studies are summarized. Physiological genomic studies based on zinc sulfate supplementation are highlighted, and novel zinc-responsive genes involved in yeast stress tolerance are focused. The dependence of host genetic background of yeast stress tolerance and roles of histones and their modifications are emphasized. The development of robust yeast strains based on multiomics analysis benefits economic bioconversion of lignocellulosic biomass.
期刊介绍:
Molecular biology has been providing an overwhelming amount of data on the structural components and molecular machineries of the cell and its organelles and the complexity of intra- and intercellular communication. The molecular basis of hereditary and acquired diseases is beginning to be unravelled, and profound new insights into development and evolutionary biology have been gained from molecular approaches. Progress in Molecular and Subcellular Biology summarises the most recent developments in this fascinating area of biology.