Stop-and-Go: Dynamics of Nucleolar Transcription During the Cell Cycle.

IF 3.2 Q2 GENETICS & HEREDITY Epigenetics Insights Pub Date : 2019-05-21 eCollection Date: 2019-01-01 DOI:10.1177/2516865719849090
Aishwarya Iyer-Bierhoff, Ingrid Grummt
{"title":"Stop-and-Go: Dynamics of Nucleolar Transcription During the Cell Cycle.","authors":"Aishwarya Iyer-Bierhoff, Ingrid Grummt","doi":"10.1177/2516865719849090","DOIUrl":null,"url":null,"abstract":"Entry into mitosis correlates with nucleolar disassembly and shutdown of ribosomal RNA (rRNA) gene (rDNA) transcription. In telophase, nucleoli reform and transcription is reactivated. The molecular mechanisms underlying the dynamics of nucleolar transcription during the cell cycle are manifold. Although mitotic inactivation of the RNA polymerase I (Pol I) transcription machinery by posttranslational modifications has been extensively studied, little is known about the structure of rDNA chromatin during progression through mitosis. Methylation of histone H2A at glutamine 104 (H2AQ104me), a dedicated nucleolar histone modification, is lost in prometaphase, leading to chromatin compaction, which enforces mitotic repression of rRNA genes. At telophase, restoration of H2AQ104me is required for the activation of transcription. H2AQ104 methylation and chromatin dynamics are regulated by fibrillarin (FBL) and the NAD+-dependent nucleolar deacetylase sirtuin 7 (SIRT7). Deacetylation of FBL is required for the methylation of H2AQ104 and high levels of rDNA transcription during interphase. At the entry into mitosis, nucleoli disassemble and FBL is hyperacetylated, leading to loss of H2AQ104me, chromatin compaction, and shutdown of Pol I transcription. These results reveal that reversible acetylation of FBL regulates methylation of nucleolar H2AQ104, thereby reinforcing oscillation of Pol I transcription during the cell cycle.","PeriodicalId":41996,"journal":{"name":"Epigenetics Insights","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2019-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/2516865719849090","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epigenetics Insights","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/2516865719849090","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2019/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 11

Abstract

Entry into mitosis correlates with nucleolar disassembly and shutdown of ribosomal RNA (rRNA) gene (rDNA) transcription. In telophase, nucleoli reform and transcription is reactivated. The molecular mechanisms underlying the dynamics of nucleolar transcription during the cell cycle are manifold. Although mitotic inactivation of the RNA polymerase I (Pol I) transcription machinery by posttranslational modifications has been extensively studied, little is known about the structure of rDNA chromatin during progression through mitosis. Methylation of histone H2A at glutamine 104 (H2AQ104me), a dedicated nucleolar histone modification, is lost in prometaphase, leading to chromatin compaction, which enforces mitotic repression of rRNA genes. At telophase, restoration of H2AQ104me is required for the activation of transcription. H2AQ104 methylation and chromatin dynamics are regulated by fibrillarin (FBL) and the NAD+-dependent nucleolar deacetylase sirtuin 7 (SIRT7). Deacetylation of FBL is required for the methylation of H2AQ104 and high levels of rDNA transcription during interphase. At the entry into mitosis, nucleoli disassemble and FBL is hyperacetylated, leading to loss of H2AQ104me, chromatin compaction, and shutdown of Pol I transcription. These results reveal that reversible acetylation of FBL regulates methylation of nucleolar H2AQ104, thereby reinforcing oscillation of Pol I transcription during the cell cycle.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
走走停停:细胞周期中核仁转录的动力学。
进入有丝分裂与核仁解体和关闭核糖体RNA (rRNA)基因(rDNA)转录有关。在末期,核仁重组和转录被重新激活。在细胞周期中核仁转录动力学的分子机制是多方面的。尽管通过翻译后修饰对RNA聚合酶I (Pol I)转录机制的有丝分裂失活进行了广泛的研究,但对有丝分裂过程中rDNA染色质的结构知之甚少。组蛋白H2A在谷氨酰胺104位点的甲基化(H2AQ104me)是一种专用的核仁组蛋白修饰,在中期丢失,导致染色质压实,从而加强rRNA基因的有丝分裂抑制。在末期,H2AQ104me的恢复是激活转录所必需的。H2AQ104甲基化和染色质动力学受纤维蛋白(FBL)和NAD+依赖的核去乙酰化酶sirtuin 7 (SIRT7)调控。在间期H2AQ104的甲基化和高水平的rDNA转录需要FBL的去乙酰化。进入有丝分裂时,核仁解体,FBL高乙酰化,导致H2AQ104me丢失,染色质压实,Pol I转录关闭。这些结果表明,FBL的可逆乙酰化调节核仁H2AQ104的甲基化,从而加强细胞周期中Pol I转录的振荡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Epigenetics Insights
Epigenetics Insights GENETICS & HEREDITY-
CiteScore
5.10
自引率
0.00%
发文量
10
审稿时长
8 weeks
期刊最新文献
Epigenetics Mechanisms of Honeybees: Secrets of Royal Jelly. Circular RNA in Multiple Sclerosis: Pathogenicity and Potential Biomarker Development: A Systematic Review. Associations Between Epigenetic Age Acceleration and microRNA Expression Among U.S. Firefighters. Subacute and Chronic Spinal Cord Injury: A Scoping Review of Epigenetics and Secondary Health Conditions. DNA Methylation in Cancer: Epigenetic View of Dietary and Lifestyle Factors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1