Grace E. Vincent , Sarah M. Jay , Charli Sargent , Katya Kovac , Corneel Vandelanotte , Nicola D. Ridgers , Sally A. Ferguson
{"title":"The impact of breaking up prolonged sitting on glucose metabolism and cognitive function when sleep is restricted","authors":"Grace E. Vincent , Sarah M. Jay , Charli Sargent , Katya Kovac , Corneel Vandelanotte , Nicola D. Ridgers , Sally A. Ferguson","doi":"10.1016/j.nbscr.2017.09.001","DOIUrl":null,"url":null,"abstract":"<div><h3>Objectives</h3><p>To investigate the acute benefits of breaking up prolonged sitting with light-intensity physical activity on (i) glucose metabolism under conditions of sleep restriction, and (ii) cognitive deficits associated with sleep restriction.</p></div><div><h3>Methods</h3><p>This counterbalanced, crossover trial consisted of two five-day (5 night) experimental conditions separated by a two-week washout period. On the first night, participants were given a 9-h sleep opportunity to allow the collection of steady-state baseline measures the following day. This was followed by three consecutive nights of sleep restriction (5-h sleep opportunity). In the sitting condition (SIT), participants remained seated between 1000 and 1800 h. In the physical activity condition (ACT), participants completed 3-min bouts of light-intensity walking every 30 min on a motorised treadmill between 1000 and 1800 h. At all other times, in both conditions, participants remained seated, except when walking to the dining room or to use the bathroom (max distance = 32 m). Six physically inactive, healthy males were randomised to one of two trial orders, 1) SIT then ACT, or 2) ACT then SIT. Continuous measures of interstitial glucose were measured at 5-min intervals. A cognitive and subjective test battery was administered every two hours during wake periods. Analyses were conducted using a series of linear mixed-effect ANOVAs.</p></div><div><h3>Results</h3><p>No differences in interstitial glucose concentration or cognitive performance were observed between the SIT condition and the ACT condition. Participants reported higher levels of sleepiness, and felt less alert in the SIT condition compared with the ACT condition.</p></div><div><h3>Conclusions</h3><p>There were no observable benefits of breaking up prolonged sitting on glucose metabolism under conditions of sleep restriction. These findings have implications for behaviour change interventions. Future studies will need to include larger, less homogenous study populations and appropriate control conditions (i.e., 8–9 h sleep opportunities).</p></div>","PeriodicalId":37827,"journal":{"name":"Neurobiology of Sleep and Circadian Rhythms","volume":"4 ","pages":"Pages 17-23"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.nbscr.2017.09.001","citationCount":"29","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurobiology of Sleep and Circadian Rhythms","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2451994417300184","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 29
Abstract
Objectives
To investigate the acute benefits of breaking up prolonged sitting with light-intensity physical activity on (i) glucose metabolism under conditions of sleep restriction, and (ii) cognitive deficits associated with sleep restriction.
Methods
This counterbalanced, crossover trial consisted of two five-day (5 night) experimental conditions separated by a two-week washout period. On the first night, participants were given a 9-h sleep opportunity to allow the collection of steady-state baseline measures the following day. This was followed by three consecutive nights of sleep restriction (5-h sleep opportunity). In the sitting condition (SIT), participants remained seated between 1000 and 1800 h. In the physical activity condition (ACT), participants completed 3-min bouts of light-intensity walking every 30 min on a motorised treadmill between 1000 and 1800 h. At all other times, in both conditions, participants remained seated, except when walking to the dining room or to use the bathroom (max distance = 32 m). Six physically inactive, healthy males were randomised to one of two trial orders, 1) SIT then ACT, or 2) ACT then SIT. Continuous measures of interstitial glucose were measured at 5-min intervals. A cognitive and subjective test battery was administered every two hours during wake periods. Analyses were conducted using a series of linear mixed-effect ANOVAs.
Results
No differences in interstitial glucose concentration or cognitive performance were observed between the SIT condition and the ACT condition. Participants reported higher levels of sleepiness, and felt less alert in the SIT condition compared with the ACT condition.
Conclusions
There were no observable benefits of breaking up prolonged sitting on glucose metabolism under conditions of sleep restriction. These findings have implications for behaviour change interventions. Future studies will need to include larger, less homogenous study populations and appropriate control conditions (i.e., 8–9 h sleep opportunities).
期刊介绍:
Neurobiology of Sleep and Circadian Rhythms is a multidisciplinary journal for the publication of original research and review articles on basic and translational research into sleep and circadian rhythms. The journal focuses on topics covering the mechanisms of sleep/wake and circadian regulation from molecular to systems level, and on the functional consequences of sleep and circadian disruption. A key aim of the journal is the translation of basic research findings to understand and treat sleep and circadian disorders. Topics include, but are not limited to: Basic and translational research, Molecular mechanisms, Genetics and epigenetics, Inflammation and immunology, Memory and learning, Neurological and neurodegenerative diseases, Neuropsychopharmacology and neuroendocrinology, Behavioral sleep and circadian disorders, Shiftwork, Social jetlag.