Early-stage corrosion, ion release, and the antibacterial effect of copper and cuprous oxide in physiological buffers: Phosphate-buffered saline vs Na-4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid.
Jiaqi Luo, Christina Hein, Jean-François Pierson, Frank Mücklich
{"title":"Early-stage corrosion, ion release, and the antibacterial effect of copper and cuprous oxide in physiological buffers: Phosphate-buffered saline vs Na-4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid.","authors":"Jiaqi Luo, Christina Hein, Jean-François Pierson, Frank Mücklich","doi":"10.1063/1.5123039","DOIUrl":null,"url":null,"abstract":"<p><p>Copper surfaces are well known for their antibacterial effects due to the release of copper ions. This benefit has been shown in many antibacterial efficiency tests, however, without considering the corrosion behaviors of copper in the physiological solutions, which could play an indispensable role in ion release from the metallic surface. This study compared the ground copper surface and sputtered cuprous oxide (Cu<sub>2</sub>O) coating in two common physiological buffers: phosphate-buffered saline (PBS) and Na-4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (Na-HEPES). The growth of the cuprous oxide (Cu<sub>2</sub>O) layer was found on copper in pure PBS, inhibiting further copper ion release. In contrast, a continuous release of copper ions was recorded in Na-HEPES for 3 h, where no oxide formation was observed. The antibacterial efficiency of copper (against E. coli) was measured and discussed with the ion release kinetics in the presence of E. coli. Similar results were obtained from Cu<sub>2</sub>O coating, ruling out its assisting role in showing the antibacterial property from copper surfaces, but they did indicate the importance of taking environmental parameters into consideration in interpreting the antibacterial efficiency of copper surfaces.</p>","PeriodicalId":49232,"journal":{"name":"Biointerphases","volume":"14 6","pages":"061004"},"PeriodicalIF":2.1000,"publicationDate":"2019-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1063/1.5123039","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biointerphases","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/1.5123039","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 4
Abstract
Copper surfaces are well known for their antibacterial effects due to the release of copper ions. This benefit has been shown in many antibacterial efficiency tests, however, without considering the corrosion behaviors of copper in the physiological solutions, which could play an indispensable role in ion release from the metallic surface. This study compared the ground copper surface and sputtered cuprous oxide (Cu2O) coating in two common physiological buffers: phosphate-buffered saline (PBS) and Na-4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (Na-HEPES). The growth of the cuprous oxide (Cu2O) layer was found on copper in pure PBS, inhibiting further copper ion release. In contrast, a continuous release of copper ions was recorded in Na-HEPES for 3 h, where no oxide formation was observed. The antibacterial efficiency of copper (against E. coli) was measured and discussed with the ion release kinetics in the presence of E. coli. Similar results were obtained from Cu2O coating, ruling out its assisting role in showing the antibacterial property from copper surfaces, but they did indicate the importance of taking environmental parameters into consideration in interpreting the antibacterial efficiency of copper surfaces.
期刊介绍:
Biointerphases emphasizes quantitative characterization of biomaterials and biological interfaces. As an interdisciplinary journal, a strong foundation of chemistry, physics, biology, engineering, theory, and/or modelling is incorporated into originated articles, reviews, and opinionated essays. In addition to regular submissions, the journal regularly features In Focus sections, targeted on specific topics and edited by experts in the field. Biointerphases is an international journal with excellence in scientific peer-review. Biointerphases is indexed in PubMed and the Science Citation Index (Clarivate Analytics). Accepted papers appear online immediately after proof processing and are uploaded to key citation sources daily. The journal is based on a mixed subscription and open-access model: Typically, authors can publish without any page charges but if the authors wish to publish open access, they can do so for a modest fee.
Topics include:
bio-surface modification
nano-bio interface
protein-surface interactions
cell-surface interactions
in vivo and in vitro systems
biofilms / biofouling
biosensors / biodiagnostics
bio on a chip
coatings
interface spectroscopy
biotribology / biorheology
molecular recognition
ambient diagnostic methods
interface modelling
adhesion phenomena.