A novel polycaprolactone/carbon nanofiber composite as a conductive neural guidance channel: an in vitro and in vivo study.

IF 4.4 3区 医学 Q2 ENGINEERING, BIOMEDICAL Progress in Biomaterials Pub Date : 2019-12-01 Epub Date: 2019-12-12 DOI:10.1007/s40204-019-00121-3
Saeed Farzamfar, Majid Salehi, Seyed Mohammad Tavangar, Javad Verdi, Korosh Mansouri, Arman Ai, Ziba Veisi Malekshahi, Jafar Ai
{"title":"A novel polycaprolactone/carbon nanofiber composite as a conductive neural guidance channel: an in vitro and in vivo study.","authors":"Saeed Farzamfar, Majid Salehi, Seyed Mohammad Tavangar, Javad Verdi, Korosh Mansouri, Arman Ai, Ziba Veisi Malekshahi, Jafar Ai","doi":"10.1007/s40204-019-00121-3","DOIUrl":null,"url":null,"abstract":"<p><p>The current study aimed to investigate the potential of carbon nanofibers to promote peripheral nerve regeneration. The carbon nanofiber-imbedded scaffolds were produced from polycaprolactone and carbon nanofibers using thermally induced phase separation method. Electrospinning technique was utilized to fabricate polycaprolactone/collagen nanofibrous sheets. The incorporation of carbon nanofibers into polycaprolactone's matrix significantly reduced its electrical resistance from 4.3 × 10<sup>9</sup> ± 0.34 × 10<sup>9</sup> Ω to 8.7 × 10<sup>4</sup> ± 1.2 × 10<sup>4</sup> Ω. Further in vitro studies showed that polycaprolactone/carbon nanofiber scaffolds had the porosity of 82.9 ± 3.7% and degradation rate of 1.84 ± 0.37% after 30 days and 3.58 ± 0.39% after 60 days. The fabricated scaffolds were favorable for PC-12 cells attachment and proliferation. Neural guidance channels were produced from the polycaprolactone/carbon nanofiber composites using water jet cutter machine then incorporated with PCL/collagen nanofibrous sheets. The composites were implanted into severed rat sciatic nerve. After 12 weeks, the results of histopathological examinations and functional analysis proved that conductive conduit out-performed the non-conductive type and induced no toxicity or immunogenic reactions, suggesting its potential applicability to treat peripheral nerve damage in the clinic.</p>","PeriodicalId":20691,"journal":{"name":"Progress in Biomaterials","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6930318/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40204-019-00121-3","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2019/12/12 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The current study aimed to investigate the potential of carbon nanofibers to promote peripheral nerve regeneration. The carbon nanofiber-imbedded scaffolds were produced from polycaprolactone and carbon nanofibers using thermally induced phase separation method. Electrospinning technique was utilized to fabricate polycaprolactone/collagen nanofibrous sheets. The incorporation of carbon nanofibers into polycaprolactone's matrix significantly reduced its electrical resistance from 4.3 × 109 ± 0.34 × 109 Ω to 8.7 × 104 ± 1.2 × 104 Ω. Further in vitro studies showed that polycaprolactone/carbon nanofiber scaffolds had the porosity of 82.9 ± 3.7% and degradation rate of 1.84 ± 0.37% after 30 days and 3.58 ± 0.39% after 60 days. The fabricated scaffolds were favorable for PC-12 cells attachment and proliferation. Neural guidance channels were produced from the polycaprolactone/carbon nanofiber composites using water jet cutter machine then incorporated with PCL/collagen nanofibrous sheets. The composites were implanted into severed rat sciatic nerve. After 12 weeks, the results of histopathological examinations and functional analysis proved that conductive conduit out-performed the non-conductive type and induced no toxicity or immunogenic reactions, suggesting its potential applicability to treat peripheral nerve damage in the clinic.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种新型聚己内酯/碳纳米纤维复合材料作为传导神经引导通道:体外和体内研究。
目前的研究旨在研究碳纳米纤维促进周围神经再生的潜力。以聚己内酯和碳纳米纤维为原料,采用热诱导相分离法制备了碳纳米纤维嵌入支架。采用静电纺丝技术制备聚己内酯/胶原纳米纤维片材。将碳纳米纤维掺入聚己内酯的基质中显著降低了其电阻,从4.3 × 109 ± 0.34 × 109Ω至8.7 × 104 ± 1.2 × 104Ω。进一步的体外研究表明,聚己内酯/碳纳米纤维支架的孔隙率为82.9 ± 3.7%,降解率1.84 ± 30天后0.37%和3.58 ± 60天后为0.39%。所制备的支架有利于PC-12细胞的附着和增殖。使用水射流切割机从聚己内酯/碳纳米纤维复合材料制备神经引导通道,然后将其与PCL/胶原纳米纤维片结合。将复合材料植入大鼠坐骨神经。12周后,组织病理学检查和功能分析结果证明,导电导管优于非导电导管,没有引起毒性或免疫原性反应,表明其在临床上治疗周围神经损伤的潜在适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Progress in Biomaterials
Progress in Biomaterials MATERIALS SCIENCE, BIOMATERIALS-
CiteScore
9.60
自引率
4.10%
发文量
35
期刊介绍: Progress in Biomaterials is a multidisciplinary, English-language publication of original contributions and reviews concerning studies of the preparation, performance and evaluation of biomaterials; the chemical, physical, biological and mechanical behavior of materials both in vitro and in vivo in areas such as tissue engineering and regenerative medicine, drug delivery and implants where biomaterials play a significant role. Including all areas of: design; preparation; performance and evaluation of nano- and biomaterials in tissue engineering; drug delivery systems; regenerative medicine; implantable medical devices; interaction of cells/stem cells on biomaterials and related applications.
期刊最新文献
Chitosan scaffolds with mesoporous hydroxyapatite and mesoporous bioactive glass. Correction to: Sustained release of valproic acid loaded on chitosan nanoparticles within hybrid of alginate/chitosan hydrogel with/without stem cells in regeneration of spinal cord injury. Anticancer potential of biologically synthesized silver nanoparticles using Lantana camara leaf extract. Sustained release of valproic acid loaded on chitosan nanoparticles within hybrid of alginate/chitosan hydrogel with/without stem cells in regeneration of spinal cord injury. Acceleration in healing of infected full-thickness wound with novel antibacterial γ-AlOOH-based nanocomposites.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1