{"title":"Lipid accumulation product is a predictor of nonalcoholic fatty liver disease in childhood obesity.","authors":"Bahar Özcabı, Salih Demirhan, Mesut Akyol, Hatice Öztürkmen Akay, Ayla Güven","doi":"10.3345/kjp.2019.00248","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Lipid accumulation product (LAP) is associated with the presence and severity of nonalcoholic fatty liver disease (NAFLD) in adults.</p><p><strong>Purpose: </strong>Here we evaluated the ability of LAP to predict NAFLD in obese children.</p><p><strong>Methods: </strong>Eighty obese children (38 girls; age 6-18 years) were included. Anthropometric measurements and biochemical values were obtained from the patients' medical records. LAP was calculated as [waist circumference (WC) (cm) - 58]×triglycerides (mmol/L) in girls; [WC (cm) - 65]×triglycerides (mmol/ L) in boys. The minLAP and adjLAP were described (3% and 50% of WC values, respectively) and the total/high-density lipoprotein cholesterol index (TC/HDL-C) was calculated. NAFLD was observed on ultrasound, and patients were divided into 3 groups by steatosis grade (normal, grade 0; mild, grade 1; moderate-severe, grade 2-3). The area under the curve (AUC) and appropriate index cutoff points were calculated by receiver operator characteristic analysis.</p><p><strong>Results: </strong>LAP was positively correlated with puberty stage (rho=0.409; P<0.001), fasting insulin (rho= 0.507; P<0.001), homeostasis model assessment of insulin resistance (rho=0.470; P<0.001), uric acid (rho=0.522; P<0.001), and TC/HDL-C (rho=0.494; P<0.001) and negatively correlated with HDL-C (rho=-3.833; P<0.001). LAP values could be used to diagnose hepatosteatosis (AUC=0.698; P=0.002). The LAP, adjLAP, and minLAP cutoff values were 42.7 (P=0.002), 40.05 (P=0.003), and 53.47 (P= 0.08), respectively. For LAP, the differences between the normal and mild groups (P=0.035) and the normal and moderate-severe groups were statistically significant (P=0.037), whereas the difference between the mild and moderate-severe groups was not (P>0.005). There was a statistically significant difference between the normal and mild groups for adjLAP (P=0.043) but not between the other groups (P>0.005). There was no significant intergroup difference in minLAP (P>0.005).</p><p><strong>Conclusion: </strong>LAP is a powerful and easy tool to predict NAFLD in childhood. If LAP is ≥42.7, NAFLD should be suspected. This is the first study to assess LAP diagnostic accuracy for childhood obesity.</p>","PeriodicalId":17863,"journal":{"name":"Korean Journal of Pediatrics","volume":"62 12","pages":"450-455"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/b9/84/kjp-2019-00248.PMC6933305.pdf","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Korean Journal of Pediatrics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3345/kjp.2019.00248","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2019/10/28 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11
Abstract
Background: Lipid accumulation product (LAP) is associated with the presence and severity of nonalcoholic fatty liver disease (NAFLD) in adults.
Purpose: Here we evaluated the ability of LAP to predict NAFLD in obese children.
Methods: Eighty obese children (38 girls; age 6-18 years) were included. Anthropometric measurements and biochemical values were obtained from the patients' medical records. LAP was calculated as [waist circumference (WC) (cm) - 58]×triglycerides (mmol/L) in girls; [WC (cm) - 65]×triglycerides (mmol/ L) in boys. The minLAP and adjLAP were described (3% and 50% of WC values, respectively) and the total/high-density lipoprotein cholesterol index (TC/HDL-C) was calculated. NAFLD was observed on ultrasound, and patients were divided into 3 groups by steatosis grade (normal, grade 0; mild, grade 1; moderate-severe, grade 2-3). The area under the curve (AUC) and appropriate index cutoff points were calculated by receiver operator characteristic analysis.
Results: LAP was positively correlated with puberty stage (rho=0.409; P<0.001), fasting insulin (rho= 0.507; P<0.001), homeostasis model assessment of insulin resistance (rho=0.470; P<0.001), uric acid (rho=0.522; P<0.001), and TC/HDL-C (rho=0.494; P<0.001) and negatively correlated with HDL-C (rho=-3.833; P<0.001). LAP values could be used to diagnose hepatosteatosis (AUC=0.698; P=0.002). The LAP, adjLAP, and minLAP cutoff values were 42.7 (P=0.002), 40.05 (P=0.003), and 53.47 (P= 0.08), respectively. For LAP, the differences between the normal and mild groups (P=0.035) and the normal and moderate-severe groups were statistically significant (P=0.037), whereas the difference between the mild and moderate-severe groups was not (P>0.005). There was a statistically significant difference between the normal and mild groups for adjLAP (P=0.043) but not between the other groups (P>0.005). There was no significant intergroup difference in minLAP (P>0.005).
Conclusion: LAP is a powerful and easy tool to predict NAFLD in childhood. If LAP is ≥42.7, NAFLD should be suspected. This is the first study to assess LAP diagnostic accuracy for childhood obesity.
期刊介绍:
Korean J Pediatr covers clinical and research works relevant to all aspects of child healthcare. The journal aims to serve pediatricians through the prompt publication of significant advances in any field of pediatrics and to rapidly disseminate recently updated knowledge to the public. Additionally, it will initiate dynamic, international, academic discussions concerning the major topics related to pediatrics. Manuscripts are categorized as review articles, original articles, and case reports. Areas of specific interest include: Growth and development, Neonatology, Pediatric neurology, Pediatric nephrology, Pediatric endocrinology, Pediatric cardiology, Pediatric allergy, Pediatric pulmonology, Pediatric infectious diseases, Pediatric immunology, Pediatric hemato-oncology, Pediatric gastroenterology, Nutrition, Human genetics, Metabolic diseases, Adolescence medicine, General pediatrics.