Machine Learning for Analysis of Microscopy Images: A Practical Guide

Q3 Biochemistry, Genetics and Molecular Biology Current Protocols in Cell Biology Pub Date : 2020-01-06 DOI:10.1002/cpcb.101
Vadim Zinchuk, Olga Grossenbacher-Zinchuk
{"title":"Machine Learning for Analysis of Microscopy Images: A Practical Guide","authors":"Vadim Zinchuk,&nbsp;Olga Grossenbacher-Zinchuk","doi":"10.1002/cpcb.101","DOIUrl":null,"url":null,"abstract":"<p>The explosive growth of machine learning has provided scientists with insights into data in ways unattainable using prior research techniques. It has allowed the detection of biological features that were previously unrecognized and overlooked. However, because machine-learning methodology originates from informatics, many cell biology labs have experienced difficulties in implementing this approach. In this article, we target the rapidly expanding audience of cell and molecular biologists interested in exploiting machine learning for analysis of their research. We discuss the advantages of employing machine learning with microscopy approaches and describe the machine-learning pipeline. We also give practical guidelines for building models of cell behavior using machine learning. We conclude with an overview of the tools required for model creation, and share advice on their use. © 2020 by John Wiley &amp; Sons, Inc.</p>","PeriodicalId":40051,"journal":{"name":"Current Protocols in Cell Biology","volume":"86 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/cpcb.101","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Protocols in Cell Biology","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpcb.101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 17

Abstract

The explosive growth of machine learning has provided scientists with insights into data in ways unattainable using prior research techniques. It has allowed the detection of biological features that were previously unrecognized and overlooked. However, because machine-learning methodology originates from informatics, many cell biology labs have experienced difficulties in implementing this approach. In this article, we target the rapidly expanding audience of cell and molecular biologists interested in exploiting machine learning for analysis of their research. We discuss the advantages of employing machine learning with microscopy approaches and describe the machine-learning pipeline. We also give practical guidelines for building models of cell behavior using machine learning. We conclude with an overview of the tools required for model creation, and share advice on their use. © 2020 by John Wiley & Sons, Inc.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
机器学习显微镜图像分析:实用指南
机器学习的爆炸式增长为科学家提供了以往研究技术无法实现的数据洞察。它可以检测到以前未被认识和忽视的生物特征。然而,由于机器学习方法起源于信息学,许多细胞生物学实验室在实施这种方法时遇到了困难。在本文中,我们的目标受众是对利用机器学习分析其研究感兴趣的细胞和分子生物学家。我们讨论了使用显微镜方法的机器学习的优点,并描述了机器学习管道。我们还提供了使用机器学习构建细胞行为模型的实用指南。最后,我们概述了模型创建所需的工具,并分享了使用这些工具的建议。©2020 by John Wiley &儿子,Inc。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Current Protocols in Cell Biology
Current Protocols in Cell Biology Biochemistry, Genetics and Molecular Biology-Cell Biology
自引率
0.00%
发文量
0
期刊介绍: Developed by leading scientists in the field, Current Protocols in Cell Biology is an essential reference for researchers who study the relationship between specific molecules and genes and their location, function and structure at the cellular level. Updated every three months in all formats, CPCB is constantly evolving to keep pace with the very latest discoveries and developments.
期刊最新文献
Issue Information Measuring Mitochondrial Respiration in Previously Frozen Biological Samples Proximity Ligation Assay for Detecting Protein-Protein Interactions and Protein Modifications in Cells and Tissues in Situ Methods for Investigating Corneal Cell Interactions and Extracellular Vesicles In Vitro Issue Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1