Anneka Hennenfent, Hongxia Liu, Päivi H Torkkeli, Andrew S French
{"title":"RNA interference supports a role for Nanchung-Inactive in mechanotransduction by the cockroach, Periplaneta americana, tactile spine.","authors":"Anneka Hennenfent, Hongxia Liu, Päivi H Torkkeli, Andrew S French","doi":"10.1007/s10158-019-0234-x","DOIUrl":null,"url":null,"abstract":"<p><p>Proteins encoded by nanchung, inactive, nompC and piezo genes have been shown to play crucial roles in the initial detection of mechanical force by various insect auditory neurons, nociceptors and touch receptors. Most of this previous research has been performed on the larval and adult fruit fly, Drosophila melanogaster. We identified and assembled all four homologous genes in transcriptomes from the cockroach, Periplaneta americana. Injection of long double-stranded RNA (dsRNA) into the adult cockroach abdomen successfully reduced the expression of each gene, as measured by quantitative PCR (RT-qPCR). A simple electrophysiological assay was used to record action potential firing in afferent nerves of cockroach femoral tactile spines in response to a standardized mechanical step displacement. Responses of nanchung knockdown animals were significantly reduced compared to matched sham-injected animals at 14 and 21 days after injection, and inactive knockdowns similarly at 21 days. In contrast, responses of nompC and piezo knockdowns were unchanged. Our results support a model in which Nanchung and Inactive proteins combine to form a part of the mechanotransduction mechanism in the cockroach tactile spine.</p>","PeriodicalId":14430,"journal":{"name":"Invertebrate Neuroscience","volume":"20 1","pages":"1"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10158-019-0234-x","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Invertebrate Neuroscience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10158-019-0234-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Neuroscience","Score":null,"Total":0}
引用次数: 6
Abstract
Proteins encoded by nanchung, inactive, nompC and piezo genes have been shown to play crucial roles in the initial detection of mechanical force by various insect auditory neurons, nociceptors and touch receptors. Most of this previous research has been performed on the larval and adult fruit fly, Drosophila melanogaster. We identified and assembled all four homologous genes in transcriptomes from the cockroach, Periplaneta americana. Injection of long double-stranded RNA (dsRNA) into the adult cockroach abdomen successfully reduced the expression of each gene, as measured by quantitative PCR (RT-qPCR). A simple electrophysiological assay was used to record action potential firing in afferent nerves of cockroach femoral tactile spines in response to a standardized mechanical step displacement. Responses of nanchung knockdown animals were significantly reduced compared to matched sham-injected animals at 14 and 21 days after injection, and inactive knockdowns similarly at 21 days. In contrast, responses of nompC and piezo knockdowns were unchanged. Our results support a model in which Nanchung and Inactive proteins combine to form a part of the mechanotransduction mechanism in the cockroach tactile spine.
期刊介绍:
Invertebrate Neurosciences publishes peer-reviewed original articles, reviews and technical reports describing recent advances in the field of invertebrate neuroscience. The journal reports on research that exploits the simplicity and experimental tractability of the invertebrate preparations to underpin fundamental advances in neuroscience. Articles published in Invertebrate Neurosciences serve to highlight properties of signalling in the invertebrate nervous system that may be exploited in the field of antiparisitics, molluscicides and insecticides. Aspects of particular interest include:
Functional analysis of the invertebrate nervous system;
Molecular neuropharmacology and toxicology;
Neurogenetics and genomics;
Functional anatomy;
Neurodevelopment;
Neuronal networks;
Molecular and cellular mechanisms of behavior and behavioural plasticity.