Osteogenic potential of heterogeneous and CD271-enriched mesenchymal stromal cells cultured on apatite-wollastonite 3D scaffolds.

Sylvia Müller, Lyndsey Nicholson, Naif Al Harbi, Elena Mancuso, Elena Jones, Anne Dickinson, Xiao Nong Wang, Kenneth Dalgarno
{"title":"Osteogenic potential of heterogeneous and CD271-enriched mesenchymal stromal cells cultured on apatite-wollastonite 3D scaffolds.","authors":"Sylvia Müller,&nbsp;Lyndsey Nicholson,&nbsp;Naif Al Harbi,&nbsp;Elena Mancuso,&nbsp;Elena Jones,&nbsp;Anne Dickinson,&nbsp;Xiao Nong Wang,&nbsp;Kenneth Dalgarno","doi":"10.1186/s42490-019-0015-y","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Mesenchymal stromal cells (MSCs) are widely used in clinical trials for bone repair and regeneration. Despite previous evidence showing a prominent osteogenic potential of 2D cultured CD271 enriched MSCs, the osteogenic potential of CD271 enriched cells cultured on 3D scaffold is unknown. Apatite-wollastonite glass ceramic (A-W) is an osteoconductive biomaterial shown to be compatible with MSCs. This is the first study comparing the attachment, growth kinetics, and osteogenic potential of two MSC populations, namely heterogeneous plastic adherence MSCs (PA-MSCs) and CD271-enriched MSCs (CD271-MSCs), when cultured on A-W 3D scaffold.</p><p><strong>Results: </strong>The paired MSC populations were assessed for their attachment, growth kinetics and ALP activity using confocal and scanning electron microscopy and the quantifications of DNA contents and p-nitrophenyl (pNP) production respectively. While the PA-MSCs and CD271-MSCs had similar expansion and tri-lineage differentiation capacity during standard 2D culture, they showed different proliferation kinetics when seeded on the A-W scaffolds. PA-MSCs displayed a well-spread attachment with more elongated morphology compared to CD271- MSCs, signifying a different level of interaction between the cell populations and the scaffold surface. Following scaffold seeding PA-MSCs fully integrated into the scaffold surface and showed a stronger propensity for osteogenic differentiation as indicated by higher ALP activity than CD271-MSCs. Furthermore, A-W scaffold seeded uncultured non-enriched bone marrow mononuclear cells also demonstrated a higher proliferation rate and greater ALP activity compared to their CD271-enriched counterpart.</p><p><strong>Conclusions: </strong>Our findings suggest that CD271-positive enrichment of a population is not beneficial for osteogenesis when the cells are seeded on A-W scaffold. Furthermore, unselected heterogeneous MSCs or BMMNCs are more promising for A-W scaffold based bone regeneration. This leads to a conclusion of broader clinical relevance for tissue engineering: on the basis of our observations here the osteogenic potential observed in 2D cell culture should not be considered indicative of likely performance in a 3D scaffold based system, even when one of the cell populations is effectively a subset of the other.</p>","PeriodicalId":72425,"journal":{"name":"BMC biomedical engineering","volume":"1 ","pages":"16"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s42490-019-0015-y","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC biomedical engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s42490-019-0015-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Background: Mesenchymal stromal cells (MSCs) are widely used in clinical trials for bone repair and regeneration. Despite previous evidence showing a prominent osteogenic potential of 2D cultured CD271 enriched MSCs, the osteogenic potential of CD271 enriched cells cultured on 3D scaffold is unknown. Apatite-wollastonite glass ceramic (A-W) is an osteoconductive biomaterial shown to be compatible with MSCs. This is the first study comparing the attachment, growth kinetics, and osteogenic potential of two MSC populations, namely heterogeneous plastic adherence MSCs (PA-MSCs) and CD271-enriched MSCs (CD271-MSCs), when cultured on A-W 3D scaffold.

Results: The paired MSC populations were assessed for their attachment, growth kinetics and ALP activity using confocal and scanning electron microscopy and the quantifications of DNA contents and p-nitrophenyl (pNP) production respectively. While the PA-MSCs and CD271-MSCs had similar expansion and tri-lineage differentiation capacity during standard 2D culture, they showed different proliferation kinetics when seeded on the A-W scaffolds. PA-MSCs displayed a well-spread attachment with more elongated morphology compared to CD271- MSCs, signifying a different level of interaction between the cell populations and the scaffold surface. Following scaffold seeding PA-MSCs fully integrated into the scaffold surface and showed a stronger propensity for osteogenic differentiation as indicated by higher ALP activity than CD271-MSCs. Furthermore, A-W scaffold seeded uncultured non-enriched bone marrow mononuclear cells also demonstrated a higher proliferation rate and greater ALP activity compared to their CD271-enriched counterpart.

Conclusions: Our findings suggest that CD271-positive enrichment of a population is not beneficial for osteogenesis when the cells are seeded on A-W scaffold. Furthermore, unselected heterogeneous MSCs or BMMNCs are more promising for A-W scaffold based bone regeneration. This leads to a conclusion of broader clinical relevance for tissue engineering: on the basis of our observations here the osteogenic potential observed in 2D cell culture should not be considered indicative of likely performance in a 3D scaffold based system, even when one of the cell populations is effectively a subset of the other.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
磷灰石-硅灰石3D支架培养的异质性和富含cd271的间充质间质细胞的成骨潜能。
背景:间充质基质细胞(MSCs)被广泛应用于骨修复和再生的临床试验。尽管先前的证据显示2D培养的富集CD271的MSCs具有显著的成骨潜能,但在3D支架上培养的富集CD271的细胞的成骨潜能尚不清楚。磷灰石-硅灰石玻璃陶瓷(A-W)是一种与间充质干细胞兼容的骨传导生物材料。这是第一个比较在A-W 3D支架上培养的两种间充质干细胞群体,即异质塑料粘附MSCs (PA-MSCs)和富集cd271的MSCs (CD271-MSCs)的附着、生长动力学和成骨潜能的研究。结果:利用共聚焦显微镜和扫描电镜分别对配对的MSC群体的附着、生长动力学和ALP活性进行了评估,并对DNA含量和对硝基苯(pNP)产量进行了定量分析。虽然PA-MSCs和CD271-MSCs在标准2D培养中具有相似的扩增和三系分化能力,但在A-W支架上植入时,它们表现出不同的增殖动力学。与CD271- MSCs相比,PA-MSCs表现出良好的附着,具有更长的形态,这表明细胞群与支架表面之间的相互作用水平不同。支架植入后,PA-MSCs完全融入支架表面,并表现出比CD271-MSCs更高的ALP活性更强的成骨分化倾向。此外,与cd271富集的骨髓单核细胞相比,a - w支架植入未培养的非富集骨髓单核细胞也表现出更高的增殖率和更大的ALP活性。结论:我们的研究结果表明,当细胞播种在a - w支架上时,群体的cd271阳性富集不利于成骨。此外,未选择的异质MSCs或bmmnc更有希望用于基于A-W支架的骨再生。这就得出了一个与组织工程具有更广泛临床意义的结论:根据我们在这里的观察,在2D细胞培养中观察到的成骨潜能不应该被认为是3D支架系统中可能表现的指标,即使其中一个细胞群实际上是另一个细胞群的子集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
19 weeks
期刊最新文献
A performance evaluation of commercially available and 3D-printable prosthetic hands: a comparison using the anthropomorphic hand assessment protocol. Comparing scissors and scalpels to a novel surgical instrument: a biomechanical sectioning study. The neurophysiology of sensorimotor prosthetic control. Multi-parameter viscoelastic material model for denture adhesives based on time-temperature superposition and multiple linear regression analysis. The effect of using the hip exoskeleton assistive (HEXA) robot compared to conventional physiotherapy on clinical functional outcomes in stroke patients with hemiplegia: a pilot randomized controlled trial.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1