Jan Kosco, Matthew Bidwell, Hyojung Cha, Tyler Martin, Calvyn T. Howells, Michael Sachs, Dalaver H. Anjum, Sandra Gonzalez Lopez, Lingyu Zou, Andrew Wadsworth, Weimin Zhang, Lisheng Zhang, James Tellam, Rachid Sougrat, Frédéric Laquai, Dean M. DeLongchamp, James R. Durrant, Iain McCulloch
{"title":"Enhanced photocatalytic hydrogen evolution from organic semiconductor heterojunction nanoparticles","authors":"Jan Kosco, Matthew Bidwell, Hyojung Cha, Tyler Martin, Calvyn T. Howells, Michael Sachs, Dalaver H. Anjum, Sandra Gonzalez Lopez, Lingyu Zou, Andrew Wadsworth, Weimin Zhang, Lisheng Zhang, James Tellam, Rachid Sougrat, Frédéric Laquai, Dean M. DeLongchamp, James R. Durrant, Iain McCulloch","doi":"10.1038/s41563-019-0591-1","DOIUrl":null,"url":null,"abstract":"Photocatalysts formed from a single organic semiconductor typically suffer from inefficient intrinsic charge generation, which leads to low photocatalytic activities. We demonstrate that incorporating a heterojunction between a donor polymer (PTB7-Th) and non-fullerene acceptor (EH-IDTBR) in organic nanoparticles (NPs) can result in hydrogen evolution photocatalysts with greatly enhanced photocatalytic activity. Control of the nanomorphology of these NPs was achieved by varying the stabilizing surfactant employed during NP fabrication, converting it from a core–shell structure to an intermixed donor/acceptor blend and increasing H2 evolution by an order of magnitude. The resulting photocatalysts display an unprecedentedly high H2 evolution rate of over 60,000 µmol h−1 g−1 under 350 to 800 nm illumination, and external quantum efficiencies over 6% in the region of maximum solar photon flux. Photocatalysts formed from a single organic semiconductor can suffer from inefficient charge generation leading to low photocatalytic activities. Incorporating a heterojunction between a donor polymer and non-fullerene acceptor in organic nanoparticles leads to enhanced photocatalytic hydrogen evolution.","PeriodicalId":19058,"journal":{"name":"Nature Materials","volume":"19 5","pages":"559-565"},"PeriodicalIF":37.2000,"publicationDate":"2020-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1038/s41563-019-0591-1","citationCount":"282","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Materials","FirstCategoryId":"88","ListUrlMain":"https://www.nature.com/articles/s41563-019-0591-1","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 282
Abstract
Photocatalysts formed from a single organic semiconductor typically suffer from inefficient intrinsic charge generation, which leads to low photocatalytic activities. We demonstrate that incorporating a heterojunction between a donor polymer (PTB7-Th) and non-fullerene acceptor (EH-IDTBR) in organic nanoparticles (NPs) can result in hydrogen evolution photocatalysts with greatly enhanced photocatalytic activity. Control of the nanomorphology of these NPs was achieved by varying the stabilizing surfactant employed during NP fabrication, converting it from a core–shell structure to an intermixed donor/acceptor blend and increasing H2 evolution by an order of magnitude. The resulting photocatalysts display an unprecedentedly high H2 evolution rate of over 60,000 µmol h−1 g−1 under 350 to 800 nm illumination, and external quantum efficiencies over 6% in the region of maximum solar photon flux. Photocatalysts formed from a single organic semiconductor can suffer from inefficient charge generation leading to low photocatalytic activities. Incorporating a heterojunction between a donor polymer and non-fullerene acceptor in organic nanoparticles leads to enhanced photocatalytic hydrogen evolution.
期刊介绍:
Nature Materials is a monthly multi-disciplinary journal aimed at bringing together cutting-edge research across the entire spectrum of materials science and engineering. It covers all applied and fundamental aspects of the synthesis/processing, structure/composition, properties, and performance of materials. The journal recognizes that materials research has an increasing impact on classical disciplines such as physics, chemistry, and biology.
Additionally, Nature Materials provides a forum for the development of a common identity among materials scientists and encourages interdisciplinary collaboration. It takes an integrated and balanced approach to all areas of materials research, fostering the exchange of ideas between scientists involved in different disciplines.
Nature Materials is an invaluable resource for scientists in academia and industry who are active in discovering and developing materials and materials-related concepts. It offers engaging and informative papers of exceptional significance and quality, with the aim of influencing the development of society in the future.