Enhanced photocatalytic hydrogen evolution from organic semiconductor heterojunction nanoparticles

IF 37.2 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Nature Materials Pub Date : 2020-02-03 DOI:10.1038/s41563-019-0591-1
Jan Kosco, Matthew Bidwell, Hyojung Cha, Tyler Martin, Calvyn T. Howells, Michael Sachs, Dalaver H. Anjum, Sandra Gonzalez Lopez, Lingyu Zou, Andrew Wadsworth, Weimin Zhang, Lisheng Zhang, James Tellam, Rachid Sougrat, Frédéric Laquai, Dean M. DeLongchamp, James R. Durrant, Iain McCulloch
{"title":"Enhanced photocatalytic hydrogen evolution from organic semiconductor heterojunction nanoparticles","authors":"Jan Kosco, Matthew Bidwell, Hyojung Cha, Tyler Martin, Calvyn T. Howells, Michael Sachs, Dalaver H. Anjum, Sandra Gonzalez Lopez, Lingyu Zou, Andrew Wadsworth, Weimin Zhang, Lisheng Zhang, James Tellam, Rachid Sougrat, Frédéric Laquai, Dean M. DeLongchamp, James R. Durrant, Iain McCulloch","doi":"10.1038/s41563-019-0591-1","DOIUrl":null,"url":null,"abstract":"Photocatalysts formed from a single organic semiconductor typically suffer from inefficient intrinsic charge generation, which leads to low photocatalytic activities. We demonstrate that incorporating a heterojunction between a donor polymer (PTB7-Th) and non-fullerene acceptor (EH-IDTBR) in organic nanoparticles (NPs) can result in hydrogen evolution photocatalysts with greatly enhanced photocatalytic activity. Control of the nanomorphology of these NPs was achieved by varying the stabilizing surfactant employed during NP fabrication, converting it from a core–shell structure to an intermixed donor/acceptor blend and increasing H2 evolution by an order of magnitude. The resulting photocatalysts display an unprecedentedly high H2 evolution rate of over 60,000 µmol h−1 g−1 under 350 to 800 nm illumination, and external quantum efficiencies over 6% in the region of maximum solar photon flux. Photocatalysts formed from a single organic semiconductor can suffer from inefficient charge generation leading to low photocatalytic activities. Incorporating a heterojunction between a donor polymer and non-fullerene acceptor in organic nanoparticles leads to enhanced photocatalytic hydrogen evolution.","PeriodicalId":19058,"journal":{"name":"Nature Materials","volume":"19 5","pages":"559-565"},"PeriodicalIF":37.2000,"publicationDate":"2020-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1038/s41563-019-0591-1","citationCount":"282","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Materials","FirstCategoryId":"88","ListUrlMain":"https://www.nature.com/articles/s41563-019-0591-1","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 282

Abstract

Photocatalysts formed from a single organic semiconductor typically suffer from inefficient intrinsic charge generation, which leads to low photocatalytic activities. We demonstrate that incorporating a heterojunction between a donor polymer (PTB7-Th) and non-fullerene acceptor (EH-IDTBR) in organic nanoparticles (NPs) can result in hydrogen evolution photocatalysts with greatly enhanced photocatalytic activity. Control of the nanomorphology of these NPs was achieved by varying the stabilizing surfactant employed during NP fabrication, converting it from a core–shell structure to an intermixed donor/acceptor blend and increasing H2 evolution by an order of magnitude. The resulting photocatalysts display an unprecedentedly high H2 evolution rate of over 60,000 µmol h−1 g−1 under 350 to 800 nm illumination, and external quantum efficiencies over 6% in the region of maximum solar photon flux. Photocatalysts formed from a single organic semiconductor can suffer from inefficient charge generation leading to low photocatalytic activities. Incorporating a heterojunction between a donor polymer and non-fullerene acceptor in organic nanoparticles leads to enhanced photocatalytic hydrogen evolution.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
有机半导体异质结纳米颗粒增强光催化析氢。
由单一有机半导体形成的光催化剂通常具有低效的本征电荷产生,这导致光催化活性低。我们证明了在有机纳米颗粒(NPs)中加入供体聚合物(PTB7-Th)和非富勒烯受体(EH-IDTBR)之间的异质结可以导致析氢光催化剂的光催化活性大大增强。通过改变NP制造过程中使用的稳定表面活性剂,将其从核壳结构转变为混合的供体/受体混合物,并将H2的演化增加一个数量级,可以实现这些NP的纳米形态控制。所制备的光催化剂在350 ~ 800 nm光照下表现出前所未有的高氢气析出率,超过60,000µmol h-1 g-1,在最大太阳光子通量区域外量子效率超过6%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature Materials
Nature Materials 工程技术-材料科学:综合
CiteScore
62.20
自引率
0.70%
发文量
221
审稿时长
3.2 months
期刊介绍: Nature Materials is a monthly multi-disciplinary journal aimed at bringing together cutting-edge research across the entire spectrum of materials science and engineering. It covers all applied and fundamental aspects of the synthesis/processing, structure/composition, properties, and performance of materials. The journal recognizes that materials research has an increasing impact on classical disciplines such as physics, chemistry, and biology. Additionally, Nature Materials provides a forum for the development of a common identity among materials scientists and encourages interdisciplinary collaboration. It takes an integrated and balanced approach to all areas of materials research, fostering the exchange of ideas between scientists involved in different disciplines. Nature Materials is an invaluable resource for scientists in academia and industry who are active in discovering and developing materials and materials-related concepts. It offers engaging and informative papers of exceptional significance and quality, with the aim of influencing the development of society in the future.
期刊最新文献
Non-fullerene acceptors with high crystallinity and photoluminescence quantum yield enable >20% efficiency organic solar cells Asymmetric side-chains work Dynamic flow control through active matter programming language Hot effect and cool control Correlated spin-wave generation and domain-wall oscillation in a topologically textured magnetic film
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1