A novel aliasing-free subband information fusion approach for wideband sparse spectral estimation.

IF 1.7 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Eurasip Journal on Advances in Signal Processing Pub Date : 2017-01-01 Epub Date: 2017-08-23 DOI:10.1186/s13634-017-0494-8
Ji-An Luo, Xiao-Ping Zhang, Zhi Wang
{"title":"A novel aliasing-free subband information fusion approach for wideband sparse spectral estimation.","authors":"Ji-An Luo,&nbsp;Xiao-Ping Zhang,&nbsp;Zhi Wang","doi":"10.1186/s13634-017-0494-8","DOIUrl":null,"url":null,"abstract":"<p><p>Wideband sparse spectral estimation is generally formulated as a multi-dictionary/multi-measurement (MD/MM) problem which can be solved by using group sparsity techniques. In this paper, the MD/MM problem is reformulated as a single sparse indicative vector (SIV) recovery problem at the cost of introducing an additional system error. Thus, the number of unknowns is reduced greatly. We show that the system error can be neglected under certain conditions. We then present a new subband information fusion (SIF) method to estimate the SIV by jointly utilizing all the frequency bins. With orthogonal matching pursuit (OMP) leveraging the binary property of SIV's components, we develop a SIF-OMP algorithm to reconstruct the SIV. The numerical simulations demonstrate the performance of the proposed method.</p>","PeriodicalId":49203,"journal":{"name":"Eurasip Journal on Advances in Signal Processing","volume":"2017 1","pages":"61"},"PeriodicalIF":1.7000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s13634-017-0494-8","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eurasip Journal on Advances in Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s13634-017-0494-8","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2017/8/23 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 4

Abstract

Wideband sparse spectral estimation is generally formulated as a multi-dictionary/multi-measurement (MD/MM) problem which can be solved by using group sparsity techniques. In this paper, the MD/MM problem is reformulated as a single sparse indicative vector (SIV) recovery problem at the cost of introducing an additional system error. Thus, the number of unknowns is reduced greatly. We show that the system error can be neglected under certain conditions. We then present a new subband information fusion (SIF) method to estimate the SIV by jointly utilizing all the frequency bins. With orthogonal matching pursuit (OMP) leveraging the binary property of SIV's components, we develop a SIF-OMP algorithm to reconstruct the SIV. The numerical simulations demonstrate the performance of the proposed method.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
宽带稀疏谱估计中一种新的无混叠子带信息融合方法。
宽带稀疏谱估计通常被表述为一个多字典/多测量(MD/MM)问题,可以通过群稀疏性技术来解决。本文以引入额外的系统误差为代价,将MD/MM问题重新表述为单个稀疏指示向量(SIV)恢复问题。这样,未知量就大大减少了。证明了在一定条件下,系统误差可以忽略不计。然后,我们提出了一种新的子带信息融合(SIF)方法,通过联合利用所有的频带来估计SIV。利用正交匹配追踪(OMP)算法,利用SIV分量的二值性,提出了一种基于正交匹配追踪的SIF-OMP算法来重建SIV。数值仿真验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Eurasip Journal on Advances in Signal Processing
Eurasip Journal on Advances in Signal Processing ENGINEERING, ELECTRICAL & ELECTRONIC-
CiteScore
3.40
自引率
10.50%
发文量
109
审稿时长
3-8 weeks
期刊介绍: The aim of the EURASIP Journal on Advances in Signal Processing is to highlight the theoretical and practical aspects of signal processing in new and emerging technologies. The journal is directed as much at the practicing engineer as at the academic researcher. Authors of articles with novel contributions to the theory and/or practice of signal processing are welcome to submit their articles for consideration.
期刊最新文献
Air–ground integrated artificial intelligence of things with cognition-enhanced interference management Multi-user communications for line-of-sight large intelligent surface systems High-precision reconstruction method based on MTS-GAN for electromagnetic environment data in SAGIoT Model-based optimal action selection for Dyna-Q reverberation suppression cognitive sonar Fairness resource allocation based on blockchain for secure communication in integrated IoT
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1