Manipulation of Host Cell Death Pathways by Herpes Simplex Virus.

3区 医学 Q2 Medicine Current topics in microbiology and immunology Pub Date : 2023-01-01 DOI:10.1007/82_2020_196
Sudan He, Jiahuai Han
{"title":"Manipulation of Host Cell Death Pathways by Herpes Simplex Virus.","authors":"Sudan He, Jiahuai Han","doi":"10.1007/82_2020_196","DOIUrl":null,"url":null,"abstract":"<p><p>Herpes simplex virus (HSV)-1 and HSV-2 are ubiquitous human pathogens that infect keratinized epithelial surfaces and establish lifelong latent infection in sensory neurons of the peripheral nervous system. HSV-1 causes oral cold sores, and HSV-2 causes genital lesions characterized by recurrence at the site of the initial infection. In multicellular organisms, cell death plays a pivotal role in host defense by eliminating pathogen-infected cells. Apoptosis and necrosis are readily distinguished types of cell death. Apoptosis, the main form of programmed cell death, depends on the activity of certain caspases, a family of cysteine proteases. Necroptosis, a regulated form of necrosis that is unleashed when caspase activity is compromised, requires the activation of receptor-interacting protein (RIP) kinase 3 (RIPK3) through its interaction with other RIP homotypic interaction motif (RHIM)-containing proteins such as RIPK1. To ensure lifelong infection in the host, HSV carries out sophisticated molecular strategies to evade host cell death responses during viral infection. HSV-1 is a well-characterized pathogen that encodes potent viral inhibitors that modulate both caspase activation in the apoptosis pathway and RIPK3 activation in the necroptosis pathway in a dramatic, species-specific fashion. The viral UL39-encoded viral protein ICP6, the large subunit of the virus-encoded ribonucleotide reductase, functions as a suppressor of both caspase-8 and RHIM-dependent RIPK3 activities in the natural human host. In contrast, ICP6 RHIM-mediated recruitment of RIPK3 in the nonnatural mouse host drives the direct activation of necroptosis. This chapter provides an overview of the current state of the knowledge on molecular interactions between HSV-1 viral proteins and host cell death pathways and highlights how HSV-1 manipulates cell death signals for the benefit of viral propagation.</p>","PeriodicalId":11102,"journal":{"name":"Current topics in microbiology and immunology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/82_2020_196","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current topics in microbiology and immunology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/82_2020_196","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 14

Abstract

Herpes simplex virus (HSV)-1 and HSV-2 are ubiquitous human pathogens that infect keratinized epithelial surfaces and establish lifelong latent infection in sensory neurons of the peripheral nervous system. HSV-1 causes oral cold sores, and HSV-2 causes genital lesions characterized by recurrence at the site of the initial infection. In multicellular organisms, cell death plays a pivotal role in host defense by eliminating pathogen-infected cells. Apoptosis and necrosis are readily distinguished types of cell death. Apoptosis, the main form of programmed cell death, depends on the activity of certain caspases, a family of cysteine proteases. Necroptosis, a regulated form of necrosis that is unleashed when caspase activity is compromised, requires the activation of receptor-interacting protein (RIP) kinase 3 (RIPK3) through its interaction with other RIP homotypic interaction motif (RHIM)-containing proteins such as RIPK1. To ensure lifelong infection in the host, HSV carries out sophisticated molecular strategies to evade host cell death responses during viral infection. HSV-1 is a well-characterized pathogen that encodes potent viral inhibitors that modulate both caspase activation in the apoptosis pathway and RIPK3 activation in the necroptosis pathway in a dramatic, species-specific fashion. The viral UL39-encoded viral protein ICP6, the large subunit of the virus-encoded ribonucleotide reductase, functions as a suppressor of both caspase-8 and RHIM-dependent RIPK3 activities in the natural human host. In contrast, ICP6 RHIM-mediated recruitment of RIPK3 in the nonnatural mouse host drives the direct activation of necroptosis. This chapter provides an overview of the current state of the knowledge on molecular interactions between HSV-1 viral proteins and host cell death pathways and highlights how HSV-1 manipulates cell death signals for the benefit of viral propagation.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
单纯疱疹病毒对宿主细胞死亡途径的操纵
单纯疱疹病毒(HSV)-1 和 HSV-2 是无处不在的人类病原体,可感染角质化上皮表面,并在外周神经系统的感觉神经元中建立终身潜伏感染。HSV-1 导致口腔唇疱疹,HSV-2 导致生殖器病变,其特点是在初次感染部位复发。在多细胞生物体中,细胞死亡通过消除受病原体感染的细胞,在宿主防御中发挥着关键作用。细胞凋亡和细胞坏死是很容易区分的细胞死亡类型。细胞凋亡是程序性细胞死亡的主要形式,取决于某些半胱氨酸蛋白酶家族中的 Caspases 的活性。坏死(Necroptosis)是一种受调控的坏死形式,当caspase活性受到损害时就会释放,它需要通过与其他含有RIP同型相互作用基因(RHIM)的蛋白(如RIPK1)相互作用来激活受体相互作用蛋白(RIP)激酶3(RIPK3)。为了确保在宿主体内终生感染,HSV 在病毒感染期间采取了复杂的分子策略来逃避宿主细胞的死亡反应。HSV-1 是一种特征明显的病原体,它编码的强效病毒抑制剂能以显著的物种特异性方式调节凋亡途径中的 Caspase 激活和坏死途径中的 RIPK3 激活。病毒 UL39 编码的病毒蛋白 ICP6 是病毒编码的核糖核苷酸还原酶的大亚基,在人类自然宿主中可抑制 Caspase-8 和 RHIM 依赖性 RIPK3 的活性。相反,在非天然小鼠宿主中,ICP6 RHIM 介导的 RIPK3 招募直接激活了坏死。本章概述了目前有关 HSV-1 病毒蛋白与宿主细胞死亡途径之间分子相互作用的知识,并重点介绍了 HSV-1 如何操纵细胞死亡信号以利于病毒传播。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.60
自引率
0.00%
发文量
26
审稿时长
>12 weeks
期刊介绍: The review series Current Topics in Microbiology and Immunology provides a synthesis of the latest research findings in the areas of molecular immunology, bacteriology and virology. Each timely volume contains a wealth of information on the featured subject. This review series is designed to provide access to up-to-date, often previously unpublished information.
期刊最新文献
A Brief History of Polyclonal Antibody Therapies Against Bacterial and Viral Diseases Before COVID-19. Alterations of the AKT Pathway in Sporadic Human Tumors, Inherited Susceptibility to Cancer, and Overgrowth Syndromes. Evidence for the Efficacy of COVID-19 Convalescent Plasma. HemoClear: A Practical and Cost-Effective Alternative to Conventional Convalescent Plasma Retrieval Methods. Monoclonal Antibody Therapies Against SARS-CoV-2: Promises and Realities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1