Neural Mechanisms of Itch.

IF 12.1 1区 医学 Q1 NEUROSCIENCES Annual review of neuroscience Pub Date : 2020-07-08 Epub Date: 2020-02-19 DOI:10.1146/annurev-neuro-083019-024537
Mark Lay, Xinzhong Dong
{"title":"Neural Mechanisms of Itch.","authors":"Mark Lay,&nbsp;Xinzhong Dong","doi":"10.1146/annurev-neuro-083019-024537","DOIUrl":null,"url":null,"abstract":"<p><p>Itch is a unique sensation that helps organisms scratch away external threats; scratching itself induces an immune response that can contribute to more itchiness. Itch is induced chemically in the peripheral nervous system via a wide array of receptors. Given the superficial localization of itch neuron terminals, cells that dwell close to the skin contribute significantly to itch. Certain mechanical stimuli mediated by recently discovered circuits also contribute to the itch sensation. Ultimately, in the spinal cord, and likely in the brain, circuits that mediate touch, pain, and itch engage in cross modulation. Much of itch perception is still a mystery, but we present in this review the known ligands and receptors associated with itch. We also describe experiments and findings from investigations into the spinal and supraspinal circuitry responsible for the sensation of itch.</p>","PeriodicalId":8008,"journal":{"name":"Annual review of neuroscience","volume":"43 ","pages":"187-205"},"PeriodicalIF":12.1000,"publicationDate":"2020-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1146/annurev-neuro-083019-024537","citationCount":"46","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1146/annurev-neuro-083019-024537","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/2/19 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 46

Abstract

Itch is a unique sensation that helps organisms scratch away external threats; scratching itself induces an immune response that can contribute to more itchiness. Itch is induced chemically in the peripheral nervous system via a wide array of receptors. Given the superficial localization of itch neuron terminals, cells that dwell close to the skin contribute significantly to itch. Certain mechanical stimuli mediated by recently discovered circuits also contribute to the itch sensation. Ultimately, in the spinal cord, and likely in the brain, circuits that mediate touch, pain, and itch engage in cross modulation. Much of itch perception is still a mystery, but we present in this review the known ligands and receptors associated with itch. We also describe experiments and findings from investigations into the spinal and supraspinal circuitry responsible for the sensation of itch.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
瘙痒的神经机制。
痒是一种独特的感觉,可以帮助生物体抓住外部威胁;抓挠本身会引起免疫反应,从而导致更多的瘙痒。瘙痒是由周围神经系统通过一系列受体化学诱导产生的。考虑到瘙痒神经元末端的浅表定位,靠近皮肤的细胞对瘙痒有重要贡献。由最近发现的电路介导的某些机械刺激也有助于产生瘙痒感。最终,在脊髓中,也可能在大脑中,介导触觉、疼痛和瘙痒的回路参与了交叉调制。许多瘙痒感知仍然是一个谜,但我们在这篇综述中介绍了已知的与瘙痒相关的配体和受体。我们还描述了对负责瘙痒感觉的脊髓和棘上回路的实验和研究结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Annual review of neuroscience
Annual review of neuroscience 医学-神经科学
CiteScore
25.30
自引率
0.70%
发文量
29
期刊介绍: The Annual Review of Neuroscience is a well-established and comprehensive journal in the field of neuroscience, with a rich history and a commitment to open access and scholarly communication. The journal has been in publication since 1978, providing a long-standing source of authoritative reviews in neuroscience. The Annual Review of Neuroscience encompasses a wide range of topics within neuroscience, including but not limited to: Molecular and cellular neuroscience, Neurogenetics, Developmental neuroscience, Neural plasticity and repair, Systems neuroscience, Cognitive neuroscience, Behavioral neuroscience, Neurobiology of disease. Occasionally, the journal also features reviews on the history of neuroscience and ethical considerations within the field.
期刊最新文献
A Whole-Brain Topographic Ontology. Harmony in the Molecular Orchestra of Hearing: Developmental Mechanisms from the Ear to the Brain. Circuit-Specific Deep Brain Stimulation Provides Insights into Movement Control. Predictive Processing: A Circuit Approach to Psychosis. Neural Control of Naturalistic Behavior Choices.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1