D Hu, A M O'Connor, C B Winder, J M Sargeant, C Wang
{"title":"How to read and interpret the results of a Bayesian network meta-analysis: a short tutorial.","authors":"D Hu, A M O'Connor, C B Winder, J M Sargeant, C Wang","doi":"10.1017/S1466252319000343","DOIUrl":null,"url":null,"abstract":"<p><p>In this manuscript we use realistic data to conduct a network meta-analysis using a Bayesian approach to analysis. The purpose of this manuscript is to explain, in lay terms, how to interpret the output of such an analysis. Many readers are familiar with the forest plot as an approach to presenting the results of a pairwise meta-analysis. However when presented with the results of network meta-analysis, which often does not include the forest plot, the output and results can be difficult to understand. Further, one of the advantages of Bayesian network meta-analyses is in the novel outputs such as treatment rankings and the probability distributions are more commonly presented for network meta-analysis. Our goal here is to provide a tutorial for how to read the outcome of network meta-analysis rather than how to conduct or assess the risk of bias in a network meta-analysis.</p>","PeriodicalId":51313,"journal":{"name":"Animal Health Research Reviews","volume":"20 2","pages":"106-115"},"PeriodicalIF":4.3000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1017/S1466252319000343","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Animal Health Research Reviews","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1017/S1466252319000343","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"VETERINARY SCIENCES","Score":null,"Total":0}
引用次数: 9
Abstract
In this manuscript we use realistic data to conduct a network meta-analysis using a Bayesian approach to analysis. The purpose of this manuscript is to explain, in lay terms, how to interpret the output of such an analysis. Many readers are familiar with the forest plot as an approach to presenting the results of a pairwise meta-analysis. However when presented with the results of network meta-analysis, which often does not include the forest plot, the output and results can be difficult to understand. Further, one of the advantages of Bayesian network meta-analyses is in the novel outputs such as treatment rankings and the probability distributions are more commonly presented for network meta-analysis. Our goal here is to provide a tutorial for how to read the outcome of network meta-analysis rather than how to conduct or assess the risk of bias in a network meta-analysis.
期刊介绍:
Animal Health Research Reviews provides an international forum for the publication of reviews and commentaries on all aspects of animal health. Papers include in-depth analyses and broader overviews of all facets of health and science in both domestic and wild animals. Major subject areas include physiology and pharmacology, parasitology, bacteriology, food and environmental safety, epidemiology and virology. The journal is of interest to researchers involved in animal health, parasitologists, food safety experts and academics interested in all aspects of animal production and welfare.