Pub Date : 2023-12-11DOI: 10.1017/s1466252323000063
Alberto Gonçalves Evangelista, Jessica Audrey Feijó Corrêa, Anne Caroline Marques Schoch Pinto, Francieli Dalvana Ribeiro Gonçalves, Fernando Bittencourt Luciano
Animal husbandry is increasingly under pressure to meet world food demand. Thus, strategies are sought to ensure this productivity increment. The objective of this review was to gather advances in the use of bacterial probiotics in animal production. Lactobacilli correspond to the most used bacterial group, with several beneficial effects already reported and described, as well as the Enterococcus and Pediococcus genera – being the latter expressively used in aquaculture. Research on the Bifidobacterium genus is mostly focused on human health, which demonstrates great effects on blood biochemical parameters. Such results sustain the possibility of expanding its use in veterinary medicine. Other groups commonly assessed for human medicine but with prospective expansion to animal health are the genera Leuconostoc and Streptococcus, which have been demonstrating interesting effects on the prevention of viral diseases, and in dentistry, respectively. Although bacteria from the genera Bacillus and Lactococcus also have great potential for use in animal production, a complete characterization of the candidate strain must be previously made, due to the existence of pathogenic and/or spoilage variants. It is noteworthy that a growing number of studies have investigated the genus Propionibacterium, but still in very early stages. However, the hitherto excellent results endorse its application. In this way, in addition to the fact that bacterial probiotics represent a promising approach to promote productivity increase in animal production, the application of other strains than the traditionally employed genera may allow the exploitation of novel mechanisms and enlighten unexplored possibilities.
{"title":"Recent advances in the use of bacterial probiotics in animal production","authors":"Alberto Gonçalves Evangelista, Jessica Audrey Feijó Corrêa, Anne Caroline Marques Schoch Pinto, Francieli Dalvana Ribeiro Gonçalves, Fernando Bittencourt Luciano","doi":"10.1017/s1466252323000063","DOIUrl":"https://doi.org/10.1017/s1466252323000063","url":null,"abstract":"<p>Animal husbandry is increasingly under pressure to meet world food demand. Thus, strategies are sought to ensure this productivity increment. The objective of this review was to gather advances in the use of bacterial probiotics in animal production. Lactobacilli correspond to the most used bacterial group, with several beneficial effects already reported and described, as well as the <span>Enterococcus</span> and <span>Pediococcus</span> genera – being the latter expressively used in aquaculture. Research on the <span>Bifidobacterium</span> genus is mostly focused on human health, which demonstrates great effects on blood biochemical parameters. Such results sustain the possibility of expanding its use in veterinary medicine. Other groups commonly assessed for human medicine but with prospective expansion to animal health are the genera <span>Leuconostoc</span> and <span>Streptococcus</span>, which have been demonstrating interesting effects on the prevention of viral diseases, and in dentistry, respectively. Although bacteria from the genera <span>Bacillus</span> and <span>Lactococcus</span> also have great potential for use in animal production, a complete characterization of the candidate strain must be previously made, due to the existence of pathogenic and/or spoilage variants. It is noteworthy that a growing number of studies have investigated the genus <span>Propionibacterium</span>, but still in very early stages. However, the hitherto excellent results endorse its application. In this way, in addition to the fact that bacterial probiotics represent a promising approach to promote productivity increase in animal production, the application of other strains than the traditionally employed genera may allow the exploitation of novel mechanisms and enlighten unexplored possibilities.</p>","PeriodicalId":51313,"journal":{"name":"Animal Health Research Reviews","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2023-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138569339","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-01Epub Date: 2023-08-02DOI: 10.1017/S1466252323000051
Bárbara Cristina Félix Nogueira, Elaine da Silva Soares, Andrés Mauricio Ortega Orozco, Leandro Abreu da Fonseca, Artur Kanadani Campos
Ectoparasites are important to the one health concept because their parasitism can result in the transmission of pathogens, allergic reactions, the release of toxins, morbidity, and even death of the host. Ectoparasites can affect host physiology, as reflected in immune defenses and body condition as well as hematological and biochemical parameters. Thus, evidence that ectoparasites influence host hematological parameters was systematically reviewed, and the methodological quality of these studies was analyzed. The Preferred Reporting Items for Systematic Reviews and Meta-Analysis guidelines were followed, and the studies included were limited to those that evaluated changes in hematological tests in ectoparasite-infested and non-infested animals, and bias and methodological quality were evaluated using the Animal Research: Reporting of In Vivo Experiments guideline. Thirty-four studies were selected and information about the host, ectoparasite infestation, blood collection, and analysis was collected and compared whenever possible. In this review, the presence of ectoparasites influenced both the red series and the white series of hematological parameters. Among the main parameters analyzed, hematocrit, red blood cells, hemoglobin, and lymphocytes showed reductions, probably due to ectoparasite blood-feeding, while including eosinophils, neutrophils, and basophils increased in infested animals due to the host immune response. However, methodologic improvements are needed to reduce the risk of bias, enhance the reproducibility of such studies, and ensure results aligned with the mechanisms that act in the ectoparasite-host relationship.
{"title":"Evidence that ectoparasites influence the hematological parameters of the host: a systematic review.","authors":"Bárbara Cristina Félix Nogueira, Elaine da Silva Soares, Andrés Mauricio Ortega Orozco, Leandro Abreu da Fonseca, Artur Kanadani Campos","doi":"10.1017/S1466252323000051","DOIUrl":"10.1017/S1466252323000051","url":null,"abstract":"<p><p>Ectoparasites are important to the one health concept because their parasitism can result in the transmission of pathogens, allergic reactions, the release of toxins, morbidity, and even death of the host. Ectoparasites can affect host physiology, as reflected in immune defenses and body condition as well as hematological and biochemical parameters. Thus, evidence that ectoparasites influence host hematological parameters was systematically reviewed, and the methodological quality of these studies was analyzed. The Preferred Reporting Items for Systematic Reviews and Meta-Analysis guidelines were followed, and the studies included were limited to those that evaluated changes in hematological tests in ectoparasite-infested and non-infested animals, and bias and methodological quality were evaluated using the Animal Research: Reporting of In Vivo Experiments guideline. Thirty-four studies were selected and information about the host, ectoparasite infestation, blood collection, and analysis was collected and compared whenever possible. In this review, the presence of ectoparasites influenced both the red series and the white series of hematological parameters. Among the main parameters analyzed, hematocrit, red blood cells, hemoglobin, and lymphocytes showed reductions, probably due to ectoparasite blood-feeding, while including eosinophils, neutrophils, and basophils increased in infested animals due to the host immune response. However, methodologic improvements are needed to reduce the risk of bias, enhance the reproducibility of such studies, and ensure results aligned with the mechanisms that act in the ectoparasite-host relationship.</p>","PeriodicalId":51313,"journal":{"name":"Animal Health Research Reviews","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10304664","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-01Epub Date: 2023-07-04DOI: 10.1017/S1466252322000093
Eduardo Henrique Custódio Matté, Fernando Bittencourt Luciano, Alberto Gonçalves Evangelista
Several countries have shown an increased prevalence of drug resistance in animal production due to the indiscriminate use of antibiotics and antiparasitics in human and veterinary medicine. This article aims to review existing methods using naturally occurring essential oils (EOs) and their isolated compounds (EOCs) as alternatives to antimicrobials and antiparasitic compounds in animal production and, consequently, to avoid resistance. The most-reported mechanism of action of EOs and EOCs was cell membrane damage, which leads to the leakage of cytoplasmic content, increased membrane permeability, inhibition of metabolic and genetic pathways, morphologic changes, antibiofilm effects, and damage to the genetic material of infections. In parasites, anticoccidial effects, reduced motility, growth inhibition, and morphologic changes have been reported. Although these compounds regularly show a similar effect to those promoted by traditional drugs, the elucidation of their mechanisms of action is still scarce. The use of EOs and EOCs can also positively influence crucial parameters in animal production, such as body weight gain, feed conversion rate, and cholesterol reduction, which also positively impact meat quality. The application of EOs and EOCs is enhanced by their association with other natural compounds or even by the association with synthetic chemicals, which has been found to cause synergism in their antimicrobial effect. By reducing the effective therapeutical/prophylactic dose, the chances of off-flavors – the most common issue in EO and EOC application – is greatly mitigated. However, there is very little work on the combination of EOs and EOCs in large in vivo studies. In addition, research must apply the correct methodology to properly understand the observed effects; for example, the use of only high concentrations may mask potential results obtained at lower dosages. Such corrections will also allow the elucidation of finer mechanisms and promote better biotechnologic use of EOs and EOCs. This manuscript presents several information gaps to be filled before the use of EOs and EOCs are fully applicable in animal production.
{"title":"Essential oils and essential oil compounds in animal production as antimicrobials and anthelmintics: an updated review.","authors":"Eduardo Henrique Custódio Matté, Fernando Bittencourt Luciano, Alberto Gonçalves Evangelista","doi":"10.1017/S1466252322000093","DOIUrl":"10.1017/S1466252322000093","url":null,"abstract":"<p><p>Several countries have shown an increased prevalence of drug resistance in animal production due to the indiscriminate use of antibiotics and antiparasitics in human and veterinary medicine. This article aims to review existing methods using naturally occurring essential oils (EOs) and their isolated compounds (EOCs) as alternatives to antimicrobials and antiparasitic compounds in animal production and, consequently, to avoid resistance. The most-reported mechanism of action of EOs and EOCs was cell membrane damage, which leads to the leakage of cytoplasmic content, increased membrane permeability, inhibition of metabolic and genetic pathways, morphologic changes, antibiofilm effects, and damage to the genetic material of infections. In parasites, anticoccidial effects, reduced motility, growth inhibition, and morphologic changes have been reported. Although these compounds regularly show a similar effect to those promoted by traditional drugs, the elucidation of their mechanisms of action is still scarce. The use of EOs and EOCs can also positively influence crucial parameters in animal production, such as body weight gain, feed conversion rate, and cholesterol reduction, which also positively impact meat quality. The application of EOs and EOCs is enhanced by their association with other natural compounds or even by the association with synthetic chemicals, which has been found to cause synergism in their antimicrobial effect. By reducing the effective therapeutical/prophylactic dose, the chances of off-flavors – the most common issue in EO and EOC application – is greatly mitigated. However, there is very little work on the combination of EOs and EOCs in large <i>in vivo</i> studies. In addition, research must apply the correct methodology to properly understand the observed effects; for example, the use of only high concentrations may mask potential results obtained at lower dosages. Such corrections will also allow the elucidation of finer mechanisms and promote better biotechnologic use of EOs and EOCs. This manuscript presents several information gaps to be filled before the use of EOs and EOCs are fully applicable in animal production.</p>","PeriodicalId":51313,"journal":{"name":"Animal Health Research Reviews","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10303408","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-01Epub Date: 2023-06-16DOI: 10.1017/S146625232300004X
Laura M O'Connell, Aidan Coffey, Jim M O'Mahony
Antibiotic resistance has become a major health concern globally, with current predictions expecting deaths related to resistant infections to surpass those of cancer by 2050. Major efforts are being undertaken to develop derivative and novel alternatives to current antibiotic therapies in human medicine. What appears to be lacking however, are similar efforts into researching the application of those alternatives, such as (bacterio)phage therapy, in veterinary contexts. Agriculture is still undoubtedly the most prominent consumer of antibiotics, with up to 70% of annual antibiotic usage attributed to this sector, despite policies to reduce their use in food animals. This not only increases the risk of resistant infections spreading from farm to community but also the risk that animals may acquire species-specific infections that subvert treatment. While these diseases may not directly affect human welfare, they greatly affect the profit margin of industries reliant on livestock due to the cost of treatments and (more frequently) the losses associated with animal death. This means actively combatting animal infection not only benefits animal welfare but also global economies. In particular, targeting recurring or chronic conditions associated with certain livestock has the potential to greatly reduce financial losses. This can be achieved by developing novel diagnostics to quickly identify ill animals alongside the design of novel therapies. To explore this concept further, this review employs Johne's disease, a chronic gastroenteritis condition that affects ruminants, as a case study to exemplify the benefits of rapid diagnostics and effective treatment of chronic disease, with particular regard to the diagnostic and therapeutic potential of phage.
{"title":"Alternatives to antibiotics in veterinary medicine: considerations for the management of Johne's disease.","authors":"Laura M O'Connell, Aidan Coffey, Jim M O'Mahony","doi":"10.1017/S146625232300004X","DOIUrl":"10.1017/S146625232300004X","url":null,"abstract":"<p><p>Antibiotic resistance has become a major health concern globally, with current predictions expecting deaths related to resistant infections to surpass those of cancer by 2050. Major efforts are being undertaken to develop derivative and novel alternatives to current antibiotic therapies in human medicine. What appears to be lacking however, are similar efforts into researching the application of those alternatives, such as (bacterio)phage therapy, in veterinary contexts. Agriculture is still undoubtedly the most prominent consumer of antibiotics, with up to 70% of annual antibiotic usage attributed to this sector, despite policies to reduce their use in food animals. This not only increases the risk of resistant infections spreading from farm to community but also the risk that animals may acquire species-specific infections that subvert treatment. While these diseases may not directly affect human welfare, they greatly affect the profit margin of industries reliant on livestock due to the cost of treatments and (more frequently) the losses associated with animal death. This means actively combatting animal infection not only benefits animal welfare but also global economies. In particular, targeting recurring or chronic conditions associated with certain livestock has the potential to greatly reduce financial losses. This can be achieved by developing novel diagnostics to quickly identify ill animals alongside the design of novel therapies. To explore this concept further, this review employs Johne's disease, a chronic gastroenteritis condition that affects ruminants, as a case study to exemplify the benefits of rapid diagnostics and effective treatment of chronic disease, with particular regard to the diagnostic and therapeutic potential of phage.</p>","PeriodicalId":51313,"journal":{"name":"Animal Health Research Reviews","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10293241","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-01DOI: 10.1017/s1466252323000026
An abstract is not available for this content so a preview has been provided. As you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
{"title":"AHR volume 24 issue 1 Cover and Front matter","authors":"","doi":"10.1017/s1466252323000026","DOIUrl":"https://doi.org/10.1017/s1466252323000026","url":null,"abstract":"An abstract is not available for this content so a preview has been provided. As you have access to this content, a full PDF is available via the ‘Save PDF’ action button.","PeriodicalId":51313,"journal":{"name":"Animal Health Research Reviews","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135142852","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-01Epub Date: 2023-06-02DOI: 10.1017/S1466252323000038
Mohamed T El-Saadony, Muhammad Umar Yaqoob, Faiz-Ul Hassan, Mahmoud Alagawany, Muhammad Arif, Ayman E Taha, Shaaban S Elnesr, Khaled A El-Tarabily, Mohamed E Abd El-Hack
{"title":"Applications of butyric acid in poultry production: the dynamics of gut health, performance, nutrient utilization, egg quality, and osteoporosis - CORRIGENDUM.","authors":"Mohamed T El-Saadony, Muhammad Umar Yaqoob, Faiz-Ul Hassan, Mahmoud Alagawany, Muhammad Arif, Ayman E Taha, Shaaban S Elnesr, Khaled A El-Tarabily, Mohamed E Abd El-Hack","doi":"10.1017/S1466252323000038","DOIUrl":"10.1017/S1466252323000038","url":null,"abstract":"","PeriodicalId":51313,"journal":{"name":"Animal Health Research Reviews","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10350917","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-12-01DOI: 10.1017/S1466252322000044
Ting-Yu Cheng, Jeffrey J Zimmerman, Luis G Giménez-Lirola
In basic research, testing of oral fluid specimens by real-time quantitative polymerase chain reaction (qPCR) has been used to evaluate changes in gene expression levels following experimental treatments. In diagnostic medicine, qPCR has been used to detect DNA/RNA transcripts indicative of bacterial or viral infections. Normalization of qPCR using endogenous and exogenous reference genes is a well-established strategy for ensuring result comparability by controlling sample-to-sample variation introduced during sampling, storage, and qPCR testing. In this review, the majority of recent publications in human (n = 136) and veterinary (n = 179) medicine did not describe the use of internal reference genes in qPCRs for oral fluid specimens (52.9% animal studies; 57.0% human studies). However, the use of endogenous reference genes has not been fully explored or validated for oral fluid specimens. The lack of valid internal reference genes inherent to the oral fluid matrix will continue to hamper the reliability, reproducibility, and generalizability of oral fluid qPCR assays until this issue is addressed.
{"title":"Internal reference genes with the potential for normalizing quantitative PCR results for oral fluid specimens.","authors":"Ting-Yu Cheng, Jeffrey J Zimmerman, Luis G Giménez-Lirola","doi":"10.1017/S1466252322000044","DOIUrl":"https://doi.org/10.1017/S1466252322000044","url":null,"abstract":"<p><p>In basic research, testing of oral fluid specimens by real-time quantitative polymerase chain reaction (qPCR) has been used to evaluate changes in gene expression levels following experimental treatments. In diagnostic medicine, qPCR has been used to detect DNA/RNA transcripts indicative of bacterial or viral infections. Normalization of qPCR using endogenous and exogenous reference genes is a well-established strategy for ensuring result comparability by controlling sample-to-sample variation introduced during sampling, storage, and qPCR testing. In this review, the majority of recent publications in human (<i>n</i> = 136) and veterinary (<i>n</i> = 179) medicine did not describe the use of internal reference genes in qPCRs for oral fluid specimens (52.9% animal studies; 57.0% human studies). However, the use of endogenous reference genes has not been fully explored or validated for oral fluid specimens. The lack of valid internal reference genes inherent to the oral fluid matrix will continue to hamper the reliability, reproducibility, and generalizability of oral fluid qPCR assays until this issue is addressed.</p>","PeriodicalId":51313,"journal":{"name":"Animal Health Research Reviews","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9216709","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-12-01DOI: 10.1017/S1466252322000081
Ł Grześkowiak, E-M Saliu, B Martínez-Vallespín, J R Aschenbach, G A Brockmann, M Fulde, S Hartmann, B Kuhla, R Lucius, C C Metges, H J Rothkötter, W Vahjen, A G Wessels, J Zentek
Dietary fiber (DF) is receiving increasing attention, and its importance in pig nutrition is now acknowledged. Although DF for pigs was frowned upon for a long time because of reductions in energy intake and digestibility of other nutrients, it has become clear that feeding DF to pigs can affect their well-being and health. This review aims to summarize the state of knowledge of studies on DF in pigs, with an emphasis on the underlying mode of action, by considering research using DF in sows as well as suckling and weaned piglets, and fattening pigs. These studies indicate that DF can benefit the digestive tracts and the health of pigs, if certain conditions or restrictions are considered, such as concentration in the feed and fermentability. Besides the chemical composition and the impact on energy and nutrient digestibility, it is also necessary to evaluate the possible physical and physiologic effects on intestinal function and intestinal microbiota, to better understand the relation of DF to animal health and welfare. Future research should be designed to provide a better mechanistic understanding of the physiologic effects of DF in pigs.
{"title":"Dietary fiber and its role in performance, welfare, and health of pigs.","authors":"Ł Grześkowiak, E-M Saliu, B Martínez-Vallespín, J R Aschenbach, G A Brockmann, M Fulde, S Hartmann, B Kuhla, R Lucius, C C Metges, H J Rothkötter, W Vahjen, A G Wessels, J Zentek","doi":"10.1017/S1466252322000081","DOIUrl":"https://doi.org/10.1017/S1466252322000081","url":null,"abstract":"<p><p>Dietary fiber (DF) is receiving increasing attention, and its importance in pig nutrition is now acknowledged. Although DF for pigs was frowned upon for a long time because of reductions in energy intake and digestibility of other nutrients, it has become clear that feeding DF to pigs can affect their well-being and health. This review aims to summarize the state of knowledge of studies on DF in pigs, with an emphasis on the underlying mode of action, by considering research using DF in sows as well as suckling and weaned piglets, and fattening pigs. These studies indicate that DF can benefit the digestive tracts and the health of pigs, if certain conditions or restrictions are considered, such as concentration in the feed and fermentability. Besides the chemical composition and the impact on energy and nutrient digestibility, it is also necessary to evaluate the possible physical and physiologic effects on intestinal function and intestinal microbiota, to better understand the relation of DF to animal health and welfare. Future research should be designed to provide a better mechanistic understanding of the physiologic effects of DF in pigs.</p>","PeriodicalId":51313,"journal":{"name":"Animal Health Research Reviews","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9532086","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-12-01Epub Date: 2022-11-14DOI: 10.1017/S1466252321000220
Mohamed T El-Saadony, Muhammad Umar Yaqoob, Faiz-Ul Hassan, Mahmoud Alagawany, Muhammad Arif, Ayman E Taha, Shaaban S Elnesr, Khaled A El-Tarabily, Mohamed E Abd El-Hack
Due to the increasing demand for antibiotic-free livestock products from the consumer side and the ban on the use of antibiotic growth promoters, the poultry feed industry is increasingly interested in developing more alternatives to cope with this problem. Organic acids (butyric acid) have many beneficial effects on poultry health, performance, and egg quality when used in their diet, thus they can be considered for the replacement of antibiotics in livestock production systems. Butyric acid is most efficacious against pathogenic bacteria such as Salmonella spp. and Escherichia coli, and stimulates the population of beneficial gut bacteria. It is a primary energy source for colonocytes and augments the differentiation and maturation of the intestinal cells. Collectively, butyric acid should be considered as an alternative to antibiotic growth promoters, because it reduces pathogenic bacteria and their toxins, enhancing gut health thereby increasing nutrient digestibility, thus leading to improved growth performance and immunity among birds. The possible pathways and mechanisms through which butyric acid enhances gut health and production performance are discussed in this review. Detailed information about the use of butyric acid in poultry and its possible benefits under different conditions are also provided, and the impacts of butyric acid on egg quality and osteoporosis are noted.
{"title":"Applications of butyric acid in poultry production: the dynamics of gut health, performance, nutrient utilization, egg quality, and osteoporosis.","authors":"Mohamed T El-Saadony, Muhammad Umar Yaqoob, Faiz-Ul Hassan, Mahmoud Alagawany, Muhammad Arif, Ayman E Taha, Shaaban S Elnesr, Khaled A El-Tarabily, Mohamed E Abd El-Hack","doi":"10.1017/S1466252321000220","DOIUrl":"10.1017/S1466252321000220","url":null,"abstract":"<p><p>Due to the increasing demand for antibiotic-free livestock products from the consumer side and the ban on the use of antibiotic growth promoters, the poultry feed industry is increasingly interested in developing more alternatives to cope with this problem. Organic acids (butyric acid) have many beneficial effects on poultry health, performance, and egg quality when used in their diet, thus they can be considered for the replacement of antibiotics in livestock production systems. Butyric acid is most efficacious against pathogenic bacteria such as <i>Salmonella</i> spp. and <i>Escherichia coli</i>, and stimulates the population of beneficial gut bacteria. It is a primary energy source for colonocytes and augments the differentiation and maturation of the intestinal cells. Collectively, butyric acid should be considered as an alternative to antibiotic growth promoters, because it reduces pathogenic bacteria and their toxins, enhancing gut health thereby increasing nutrient digestibility, thus leading to improved growth performance and immunity among birds. The possible pathways and mechanisms through which butyric acid enhances gut health and production performance are discussed in this review. Detailed information about the use of butyric acid in poultry and its possible benefits under different conditions are also provided, and the impacts of butyric acid on egg quality and osteoporosis are noted.</p>","PeriodicalId":51313,"journal":{"name":"Animal Health Research Reviews","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9531557","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-12-01DOI: 10.1017/S1466252322000032
C Bernal-Córdoba, R Branco-Lopes, L Latorre-Segura, M de Barros-Abreu, E D Fausak, N Silva-Del-Río
The objective of this study was to conduct a systematic review of the scientific literature evaluating the efficacy and comparative efficacy of antimicrobials (AMs) for the treatment of diarrhea in calves. Eligible studies were non- and randomized controlled trials evaluating an AM intervention against a positive and negative control, with at least one of the following outcomes: fecal consistency score, fever, dehydration, appetite, attitude, weight gain, and mortality. Four electronic databases were searched. Titles and abstracts (three reviewers) and full texts (two reviewers) were screened. A total of 2899 studies were retrieved; 11 studies met the inclusion criteria. The risk of bias was assessed. Most studies had incomplete reporting of trial design and results. Eight studies compared AMs to a negative control (placebo or no treatment). Among eligible studies, the most common outcomes reported were diarrhea severity (n = 6) and mortality (n = 6). Eligible studies evaluated very different interventions and outcomes; thus, a meta-analysis was not performed. The risk of bias assessment revealed concerns with reporting of key trial features, including disease and outcome definitions. Insufficient evidence is available in the scientific literature to assess the efficacy of AMs in treating calf diarrhea.
{"title":"Use of antimicrobials in the treatment of calf diarrhea: a systematic review.","authors":"C Bernal-Córdoba, R Branco-Lopes, L Latorre-Segura, M de Barros-Abreu, E D Fausak, N Silva-Del-Río","doi":"10.1017/S1466252322000032","DOIUrl":"https://doi.org/10.1017/S1466252322000032","url":null,"abstract":"<p><p>The objective of this study was to conduct a systematic review of the scientific literature evaluating the efficacy and comparative efficacy of antimicrobials (AMs) for the treatment of diarrhea in calves. Eligible studies were non- and randomized controlled trials evaluating an AM intervention against a positive and negative control, with at least one of the following outcomes: fecal consistency score, fever, dehydration, appetite, attitude, weight gain, and mortality. Four electronic databases were searched. Titles and abstracts (three reviewers) and full texts (two reviewers) were screened. A total of 2899 studies were retrieved; 11 studies met the inclusion criteria. The risk of bias was assessed. Most studies had incomplete reporting of trial design and results. Eight studies compared AMs to a negative control (placebo or no treatment). Among eligible studies, the most common outcomes reported were diarrhea severity (<i>n</i> = 6) and mortality (<i>n</i> = 6). Eligible studies evaluated very different interventions and outcomes; thus, a meta-analysis was not performed. The risk of bias assessment revealed concerns with reporting of key trial features, including disease and outcome definitions. Insufficient evidence is available in the scientific literature to assess the efficacy of AMs in treating calf diarrhea.</p>","PeriodicalId":51313,"journal":{"name":"Animal Health Research Reviews","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9217232","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}