Removal of anionic hexavalent chromium and methyl orange pollutants by using imidazolium-based mesoporous poly(ionic liquid)s as efficient adsorbents in column.
Yaqiang Xie, Ju Lin, Hongying Lin, Yue Jiang, Jun Liang, Hongtao Wang, Song Tu, Jun Li
{"title":"Removal of anionic hexavalent chromium and methyl orange pollutants by using imidazolium-based mesoporous poly(ionic liquid)s as efficient adsorbents in column.","authors":"Yaqiang Xie, Ju Lin, Hongying Lin, Yue Jiang, Jun Liang, Hongtao Wang, Song Tu, Jun Li","doi":"10.1016/j.jhazmat.2020.122496","DOIUrl":null,"url":null,"abstract":"<p><p>Poly(ionic liquid)s (PILs) are attractive for their various applications, but the use of porous PILs have rarely been reported in anionic pollutants removal via ion-exchange by column. Herein, we report a serial of crosslinked imidazolium-based mesoporous PILs with Cl<sup>-</sup> and Br<sup>-</sup> as anions for hexavalent chromium (Cr(VI)) and methyl orange (MO) removal. Among them, PDVIm-Cl-SCD, from the free-radical polymerization of a dicationic monomer (N,N'-methylene-bis(1-(3-vinylimidazolium)) chloride, DVIm-Cl) and further supercritical carbon dioxide drying (SCD), displayed a very high sorption capacity (328.2 mg g<sup>-1</sup> at 25 °C) and excellent utilization of adsorption sites (UOA, 86.2%) towards Cr(VI), and an unprecedentedly high sorption capacity (1615.0 mg g<sup>-1</sup> at 25 °C) with a UOA of 67.4% to MO. Moreover, PDVIm-Cl-SCD also exhibited a broad pH range, excellent regeneration and remarkable reusability. Regarding to Cr(VI) removal, the volume of saturated KCl aqueous used for regenerating the Cr(VI) saturated PDVIm-Cl-SCD column (7.5-9.5 mL) was much less than the volume of treated Cr(VI) solution (160-200 mL). For MO removal, the volume of saturated NaCl solution used for regenerating the MO saturated PDVIm-Cl-SCD column (10.5-13.5 mL) was also much less than the volume of treated MO solution (220-235 mL), implying the great potential of PDVIm-Cl-SCD in sustainable wastewater treatment.</p>","PeriodicalId":361,"journal":{"name":"Journal of Hazardous Materials","volume":"392 ","pages":"122496"},"PeriodicalIF":11.3000,"publicationDate":"2020-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.jhazmat.2020.122496","citationCount":"33","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hazardous Materials","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.jhazmat.2020.122496","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/3/10 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 33
Abstract
Poly(ionic liquid)s (PILs) are attractive for their various applications, but the use of porous PILs have rarely been reported in anionic pollutants removal via ion-exchange by column. Herein, we report a serial of crosslinked imidazolium-based mesoporous PILs with Cl- and Br- as anions for hexavalent chromium (Cr(VI)) and methyl orange (MO) removal. Among them, PDVIm-Cl-SCD, from the free-radical polymerization of a dicationic monomer (N,N'-methylene-bis(1-(3-vinylimidazolium)) chloride, DVIm-Cl) and further supercritical carbon dioxide drying (SCD), displayed a very high sorption capacity (328.2 mg g-1 at 25 °C) and excellent utilization of adsorption sites (UOA, 86.2%) towards Cr(VI), and an unprecedentedly high sorption capacity (1615.0 mg g-1 at 25 °C) with a UOA of 67.4% to MO. Moreover, PDVIm-Cl-SCD also exhibited a broad pH range, excellent regeneration and remarkable reusability. Regarding to Cr(VI) removal, the volume of saturated KCl aqueous used for regenerating the Cr(VI) saturated PDVIm-Cl-SCD column (7.5-9.5 mL) was much less than the volume of treated Cr(VI) solution (160-200 mL). For MO removal, the volume of saturated NaCl solution used for regenerating the MO saturated PDVIm-Cl-SCD column (10.5-13.5 mL) was also much less than the volume of treated MO solution (220-235 mL), implying the great potential of PDVIm-Cl-SCD in sustainable wastewater treatment.
期刊介绍:
The Journal of Hazardous Materials serves as a global platform for promoting cutting-edge research in the field of Environmental Science and Engineering. Our publication features a wide range of articles, including full-length research papers, review articles, and perspectives, with the aim of enhancing our understanding of the dangers and risks associated with various materials concerning public health and the environment. It is important to note that the term "environmental contaminants" refers specifically to substances that pose hazardous effects through contamination, while excluding those that do not have such impacts on the environment or human health. Moreover, we emphasize the distinction between wastes and hazardous materials in order to provide further clarity on the scope of the journal. We have a keen interest in exploring specific compounds and microbial agents that have adverse effects on the environment.