Jodie M Simkoff, Fernando Lejarza, Morgan T Kelley, Calvin Tsay, Michael Baldea
{"title":"Process Control and Energy Efficiency.","authors":"Jodie M Simkoff, Fernando Lejarza, Morgan T Kelley, Calvin Tsay, Michael Baldea","doi":"10.1146/annurev-chembioeng-092319-083227","DOIUrl":null,"url":null,"abstract":"<p><p>We review the impact of control systems and strategies on the energy efficiency of chemical processes. We show that, in many ways, good control performance is a necessary but not sufficient condition for energy efficiency. The direct effect of process control on energy efficiency is manyfold: Reducing output variability allows for operating chemical plants closer to their limits, where the energy/economic optima typically lie. Further, good control enables novel, transient operating strategies, such as conversion smoothing and demand response. Indirectly, control systems are key to the implementation and operation of more energy-efficient plant designs, as dictated by the process integration and intensification paradigms. These conclusions are supported with references to numerous examples from the literature.</p>","PeriodicalId":8234,"journal":{"name":"Annual review of chemical and biomolecular engineering","volume":null,"pages":null},"PeriodicalIF":7.6000,"publicationDate":"2020-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1146/annurev-chembioeng-092319-083227","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of chemical and biomolecular engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1146/annurev-chembioeng-092319-083227","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/3/23 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 6
Abstract
We review the impact of control systems and strategies on the energy efficiency of chemical processes. We show that, in many ways, good control performance is a necessary but not sufficient condition for energy efficiency. The direct effect of process control on energy efficiency is manyfold: Reducing output variability allows for operating chemical plants closer to their limits, where the energy/economic optima typically lie. Further, good control enables novel, transient operating strategies, such as conversion smoothing and demand response. Indirectly, control systems are key to the implementation and operation of more energy-efficient plant designs, as dictated by the process integration and intensification paradigms. These conclusions are supported with references to numerous examples from the literature.
期刊介绍:
The Annual Review of Chemical and Biomolecular Engineering aims to provide a perspective on the broad field of chemical (and related) engineering. The journal draws from disciplines as diverse as biology, physics, and engineering, with development of chemical products and processes as the unifying theme.