J W Xia, M Sandoval-Denis, P W Crous, X G Zhang, L Lombard
{"title":"Numbers to names - restyling the <i>Fusarium incarnatum-equiseti</i> species complex.","authors":"J W Xia, M Sandoval-Denis, P W Crous, X G Zhang, L Lombard","doi":"10.3767/persoonia.2019.43.05","DOIUrl":null,"url":null,"abstract":"<p><p>The <i>Fusarium incarnatum-equiseti</i> species complex (FIESC) is a phylogenetically species-rich complex that includes over 30 cryptic phylogenetic species, making identification based on phenotypic characters problematic. Several established <i>Fusarium</i> species known to reside in the FIESC lack type material, further complicating the use of Latin binomials for this complex. To overcome this problem, an informal classification system based on a haplotype nomenclature was introduced to improve communication between researchers in various fields. However, some conflicts in the application of this nomenclature system have arisen. To date, 16 phylo-species in the FIESC have been provided with Latin binomials with approximately 18 FIESC phylo-species still lacking Latin binomials, the majority of which reside in the Incarnatum clade. The aim of this study is to introduce Latin binomials for the unnamed FIESC phylo-species based on phylogenetic inference supported by phenotypic characters. The three-gene (calmodulin, RNA polymerase II second largest subunit and translations elongation factor 1-alpha) phylogenetic inference resolved 47 lineages, of which 44 belonged to the FIESC. The <i>F. camptoceras</i> species complex (FCAMSC) is introduced here for three lineages that are distinct from the FIESC. Epitypes are designated for <i>F. compactum</i>, <i>F. incarnatum</i> and <i>F. scirpi</i>, and a neotype for <i>F. camptoceras.</i> Latin binomials are provided for 20 of these newly resolved phylo-species in the FIESC.</p>","PeriodicalId":20014,"journal":{"name":"Persoonia","volume":"43 ","pages":"186-221"},"PeriodicalIF":9.5000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/ef/58/per-43-186.PMC7085859.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Persoonia","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3767/persoonia.2019.43.05","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2019/11/14 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MYCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The Fusarium incarnatum-equiseti species complex (FIESC) is a phylogenetically species-rich complex that includes over 30 cryptic phylogenetic species, making identification based on phenotypic characters problematic. Several established Fusarium species known to reside in the FIESC lack type material, further complicating the use of Latin binomials for this complex. To overcome this problem, an informal classification system based on a haplotype nomenclature was introduced to improve communication between researchers in various fields. However, some conflicts in the application of this nomenclature system have arisen. To date, 16 phylo-species in the FIESC have been provided with Latin binomials with approximately 18 FIESC phylo-species still lacking Latin binomials, the majority of which reside in the Incarnatum clade. The aim of this study is to introduce Latin binomials for the unnamed FIESC phylo-species based on phylogenetic inference supported by phenotypic characters. The three-gene (calmodulin, RNA polymerase II second largest subunit and translations elongation factor 1-alpha) phylogenetic inference resolved 47 lineages, of which 44 belonged to the FIESC. The F. camptoceras species complex (FCAMSC) is introduced here for three lineages that are distinct from the FIESC. Epitypes are designated for F. compactum, F. incarnatum and F. scirpi, and a neotype for F. camptoceras. Latin binomials are provided for 20 of these newly resolved phylo-species in the FIESC.
期刊介绍:
Persoonia aspires to publish papers focusing on the molecular systematics and evolution of fungi. Additionally, it seeks to advance fungal taxonomy by employing a polythetic approach to elucidate the genuine phylogeny and relationships within the kingdom Fungi. The journal is dedicated to disseminating high-quality papers that unravel both known and novel fungal taxa at the DNA level. Moreover, it endeavors to provide fresh insights into evolutionary processes and relationships. The scope of papers considered encompasses research articles, along with topical and book reviews.