Conversational Memory Network for Emotion Recognition in Dyadic Dialogue Videos.

Devamanyu Hazarika, Soujanya Poria, Amir Zadeh, Erik Cambria, Louis-Philippe Morency, Roger Zimmermann
{"title":"Conversational Memory Network for Emotion Recognition in Dyadic Dialogue Videos.","authors":"Devamanyu Hazarika,&nbsp;Soujanya Poria,&nbsp;Amir Zadeh,&nbsp;Erik Cambria,&nbsp;Louis-Philippe Morency,&nbsp;Roger Zimmermann","doi":"10.18653/v1/n18-1193","DOIUrl":null,"url":null,"abstract":"<p><p>Emotion recognition in conversations is crucial for the development of empathetic machines. Present methods mostly ignore the role of inter-speaker dependency relations while classifying emotions in conversations. In this paper, we address recognizing utterance-level emotions in dyadic conversational videos. We propose a deep neural framework, termed conversational memory network, which leverages contextual information from the conversation history. The framework takes a multimodal approach comprising audio, visual and textual features with gated recurrent units to model past utterances of each speaker into memories. Such memories are then merged using attention-based hops to capture inter-speaker dependencies. Experiments show an accuracy improvement of 3-4% over the state of the art.</p>","PeriodicalId":74542,"journal":{"name":"Proceedings of the conference. Association for Computational Linguistics. North American Chapter. Meeting","volume":"2018 ","pages":"2122-2132"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.18653/v1/n18-1193","citationCount":"282","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the conference. Association for Computational Linguistics. North American Chapter. Meeting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/n18-1193","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 282

Abstract

Emotion recognition in conversations is crucial for the development of empathetic machines. Present methods mostly ignore the role of inter-speaker dependency relations while classifying emotions in conversations. In this paper, we address recognizing utterance-level emotions in dyadic conversational videos. We propose a deep neural framework, termed conversational memory network, which leverages contextual information from the conversation history. The framework takes a multimodal approach comprising audio, visual and textual features with gated recurrent units to model past utterances of each speaker into memories. Such memories are then merged using attention-based hops to capture inter-speaker dependencies. Experiments show an accuracy improvement of 3-4% over the state of the art.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
二元对话视频中情感识别的会话记忆网络。
对话中的情绪识别对于移情机器的发展至关重要。目前的方法在对会话情绪进行分类时,大多忽略了说话人间依赖关系的作用。在本文中,我们讨论了识别二元对话视频中的话语级情绪。我们提出了一个深层神经框架,称为会话记忆网络,它利用会话历史中的上下文信息。该框架采用多模态方法,包括音频、视觉和文本特征,以及门控循环单元,将每个说话者过去的话语建模为记忆。然后,这些记忆通过基于注意力的跳跃来合并,以捕捉说话者之间的依赖关系。实验表明,该方法的精度比目前的方法提高了3-4%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ODD: A Benchmark Dataset for the Natural Language Processing Based Opioid Related Aberrant Behavior Detection. Towards Reducing Diagnostic Errors with Interpretable Risk Prediction. ScAN: Suicide Attempt and Ideation Events Dataset. ScAN: Suicide Attempt and Ideation Events Dataset Translational NLP: A New Paradigm and General Principles for Natural Language Processing Research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1