{"title":"A decision support system for demand and capacity modelling of an accident and emergency department.","authors":"Muhammed Ordu, Eren Demir, Chris Tofallis","doi":"10.1080/20476965.2018.1561161","DOIUrl":null,"url":null,"abstract":"<p><p>Accident and emergency (A&E) departments in England have been struggling against severe capacity constraints. In addition, A&E demands have been increasing year on year. In this study, our aim was to develop a decision support system combining discrete event simulation and comparative forecasting techniques for the better management of the Princess Alexandra Hospital in England. We used the national hospital episodes statistics data-set including period April, 2009 - January, 2013. Two demand conditions are considered: the expected demand condition is based on A&E demands estimated by comparing forecasting methods, and the unexpected demand is based on the closure of a nearby A&E department due to budgeting constraints. We developed a discrete event simulation model to measure a number of key performance metrics. This paper presents a crucial study which will enable service managers and directors of hospitals to foresee their activities in future and form a strategic plan well in advance.</p>","PeriodicalId":44699,"journal":{"name":"Health Systems","volume":"9 1","pages":"31-56"},"PeriodicalIF":1.2000,"publicationDate":"2019-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/20476965.2018.1561161","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Health Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/20476965.2018.1561161","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/1/1 0:00:00","PubModel":"eCollection","JCR":"Q4","JCRName":"HEALTH POLICY & SERVICES","Score":null,"Total":0}
引用次数: 23
Abstract
Accident and emergency (A&E) departments in England have been struggling against severe capacity constraints. In addition, A&E demands have been increasing year on year. In this study, our aim was to develop a decision support system combining discrete event simulation and comparative forecasting techniques for the better management of the Princess Alexandra Hospital in England. We used the national hospital episodes statistics data-set including period April, 2009 - January, 2013. Two demand conditions are considered: the expected demand condition is based on A&E demands estimated by comparing forecasting methods, and the unexpected demand is based on the closure of a nearby A&E department due to budgeting constraints. We developed a discrete event simulation model to measure a number of key performance metrics. This paper presents a crucial study which will enable service managers and directors of hospitals to foresee their activities in future and form a strategic plan well in advance.