Vaccination of Mice with Listeria ivanovii Expressing the Truncated M Protein of Porcine Reproductive and Respiratory Syndrome Virus Induces both Antigen-Specific CD4+ and CD8+ T Cell-Mediated Immunity.
{"title":"Vaccination of Mice with Listeria ivanovii Expressing the Truncated M Protein of Porcine Reproductive and Respiratory Syndrome Virus Induces both Antigen-Specific CD4+ and CD8+ T Cell-Mediated Immunity.","authors":"Tian Tang, Chuan Wang, Qikang Pu, Jinmei Peng, Sijing Liu, Chenyan Ren, Mingjuan Jiang, Zhijun Tian","doi":"10.1159/000506686","DOIUrl":null,"url":null,"abstract":"<p><p>Porcine reproductive and respiratory syndrome (PRRS), a serious disease of swine caused by the PRRS virus (PRRSV), had a severe economic impact worldwide. As commonly used PRRS vaccines, the attenuated or inactivated vaccines, provide unsatisfactory immune protection, a new PRRS vaccine is urgently needed. In this study, a part of the PRRSV ORF6 gene (from 253 to 519 bp) encoding the hydrophilic domain of PRRSV M protein was integrated into two Listeria strains via homologous recombination to generate two PRRS vaccine candidates, namely LI-M' and LM-ΔactAplcB-M'. Both candidate vaccines showed similar growth rate as their parent strains in culture media, but presented different bacterial loads in target organs. As the integrated heterogenous gene was not expressed, LM-ΔactAplcB-M' was excluded from the immunological test. In a mouse model, LI-M' provoked both CD4+ and CD8+ T cell-mediated immunity. In addition, LI-M' boosting dramatically enhanced CD8+ T cell-mediated immunity without affecting the response intensity of CD4+ T cell-mediated immunity. All of these data suggest that LI-M' is a promising PRRS vaccine candidate.</p>","PeriodicalId":16370,"journal":{"name":"Journal of Molecular Microbiology and Biotechnology","volume":"29 1-6","pages":"74-82"},"PeriodicalIF":1.2000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1159/000506686","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Microbiology and Biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1159/000506686","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/4/14 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 1
Abstract
Porcine reproductive and respiratory syndrome (PRRS), a serious disease of swine caused by the PRRS virus (PRRSV), had a severe economic impact worldwide. As commonly used PRRS vaccines, the attenuated or inactivated vaccines, provide unsatisfactory immune protection, a new PRRS vaccine is urgently needed. In this study, a part of the PRRSV ORF6 gene (from 253 to 519 bp) encoding the hydrophilic domain of PRRSV M protein was integrated into two Listeria strains via homologous recombination to generate two PRRS vaccine candidates, namely LI-M' and LM-ΔactAplcB-M'. Both candidate vaccines showed similar growth rate as their parent strains in culture media, but presented different bacterial loads in target organs. As the integrated heterogenous gene was not expressed, LM-ΔactAplcB-M' was excluded from the immunological test. In a mouse model, LI-M' provoked both CD4+ and CD8+ T cell-mediated immunity. In addition, LI-M' boosting dramatically enhanced CD8+ T cell-mediated immunity without affecting the response intensity of CD4+ T cell-mediated immunity. All of these data suggest that LI-M' is a promising PRRS vaccine candidate.
期刊介绍:
We are entering a new and exciting era of microbiological study and application. Recent advances in the now established disciplines of genomics, proteomics and bioinformatics, together with extensive cooperation between academic and industrial concerns have brought about an integration of basic and applied microbiology as never before.