Alina Sophie Heukamp, Rebekah Anne Warwick, Michal Rivlin-Etzion
{"title":"Topographic Variations in Retinal Encoding of Visual Space.","authors":"Alina Sophie Heukamp, Rebekah Anne Warwick, Michal Rivlin-Etzion","doi":"10.1146/annurev-vision-121219-081831","DOIUrl":null,"url":null,"abstract":"<p><p>A retina completely devoid of topographic variations would be homogenous, encoding any given feature uniformly across the visual field. In a naive view, such homogeneity would appear advantageous. However, it is now clear that retinal topographic variations exist across mammalian species in a variety of forms and patterns. We briefly review some of the more established topographic variations in retinas of different mammalian species and focus on the recent discovery that cells belonging to a single neuronal subtype may exhibit distinct topographic variations in distribution, morphology, and even function. We concentrate on the mouse retina-originally viewed as homogenous-in which genetic labeling of distinct neuronal subtypes and other advanced techniques have revealed unexpected anatomical and physiological topographic variations. Notably, different subtypes reveal different patterns of nonuniformity, which may even be opposite or orthogonal to one another. These topographic variations in the encoding of visual space should be considered when studying visual processing in the retina and beyond.</p>","PeriodicalId":48658,"journal":{"name":"Annual Review of Vision Science","volume":null,"pages":null},"PeriodicalIF":5.0000,"publicationDate":"2020-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1146/annurev-vision-121219-081831","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Vision Science","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1146/annurev-vision-121219-081831","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/4/22 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 20
Abstract
A retina completely devoid of topographic variations would be homogenous, encoding any given feature uniformly across the visual field. In a naive view, such homogeneity would appear advantageous. However, it is now clear that retinal topographic variations exist across mammalian species in a variety of forms and patterns. We briefly review some of the more established topographic variations in retinas of different mammalian species and focus on the recent discovery that cells belonging to a single neuronal subtype may exhibit distinct topographic variations in distribution, morphology, and even function. We concentrate on the mouse retina-originally viewed as homogenous-in which genetic labeling of distinct neuronal subtypes and other advanced techniques have revealed unexpected anatomical and physiological topographic variations. Notably, different subtypes reveal different patterns of nonuniformity, which may even be opposite or orthogonal to one another. These topographic variations in the encoding of visual space should be considered when studying visual processing in the retina and beyond.
期刊介绍:
The Annual Review of Vision Science reviews progress in the visual sciences, a cross-cutting set of disciplines which intersect psychology, neuroscience, computer science, cell biology and genetics, and clinical medicine. The journal covers a broad range of topics and techniques, including optics, retina, central visual processing, visual perception, eye movements, visual development, vision models, computer vision, and the mechanisms of visual disease, dysfunction, and sight restoration. The study of vision is central to progress in many areas of science, and this new journal will explore and expose the connections that link it to biology, behavior, computation, engineering, and medicine.