首页 > 最新文献

Annual Review of Vision Science最新文献

英文 中文
Retinal Connectomics: A Review 视网膜连接组学:综述
IF 6 2区 医学 Q1 NEUROSCIENCES Pub Date : 2024-09-18 DOI: 10.1146/annurev-vision-102122-110414
Crystal L. Sigulinsky, Rebecca L. Pfeiffer, Bryan William Jones
The retina is an ideal model for understanding the fundamental rules for how neural networks are constructed. The compact neural networks of the retina perform all of the initial processing of visual information before transmission to higher visual centers in the brain. The field of retinal connectomics uses high-resolution electron microscopy datasets to map the intricate organization of these networks and further our understanding of how these computations are performed by revealing the fundamental topologies and allowable networks behind retinal computations. In this article, we review some of the notable advances that retinal connectomics has provided in our understanding of the specific cells and the organization of their connectivities within the retina, as well as how these are shaped in development and break down in disease. Using these anatomical maps to inform modeling has been, and will continue to be, instrumental in understanding how the retina processes visual signals.
视网膜是了解神经网络构建基本规律的理想模型。视网膜上紧凑的神经网络在将视觉信息传输到大脑的高级视觉中枢之前,完成了视觉信息的所有初始处理过程。视网膜连接组学领域使用高分辨率电子显微镜数据集来绘制这些网络的复杂组织结构图,并通过揭示视网膜计算背后的基本拓扑结构和允许的网络,进一步加深我们对这些计算如何进行的理解。在这篇文章中,我们将回顾视网膜连接组学在了解视网膜内特定细胞及其连接组织方面取得的一些显著进展,以及这些细胞在发育过程中是如何形成的,在疾病中又是如何分解的。利用这些解剖图为建模提供信息已经并将继续在了解视网膜如何处理视觉信号方面发挥重要作用。
{"title":"Retinal Connectomics: A Review","authors":"Crystal L. Sigulinsky, Rebecca L. Pfeiffer, Bryan William Jones","doi":"10.1146/annurev-vision-102122-110414","DOIUrl":"https://doi.org/10.1146/annurev-vision-102122-110414","url":null,"abstract":"The retina is an ideal model for understanding the fundamental rules for how neural networks are constructed. The compact neural networks of the retina perform all of the initial processing of visual information before transmission to higher visual centers in the brain. The field of retinal connectomics uses high-resolution electron microscopy datasets to map the intricate organization of these networks and further our understanding of how these computations are performed by revealing the fundamental topologies and allowable networks behind retinal computations. In this article, we review some of the notable advances that retinal connectomics has provided in our understanding of the specific cells and the organization of their connectivities within the retina, as well as how these are shaped in development and break down in disease. Using these anatomical maps to inform modeling has been, and will continue to be, instrumental in understanding how the retina processes visual signals.","PeriodicalId":48658,"journal":{"name":"Annual Review of Vision Science","volume":"47 1","pages":""},"PeriodicalIF":6.0,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142260925","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Digital Twin Studies for Reverse Engineering the Origins of Visual Intelligence 数字孪生研究逆向探究视觉智能的起源
IF 6 2区 医学 Q1 NEUROSCIENCES Pub Date : 2024-09-18 DOI: 10.1146/annurev-vision-101322-103628
Justin N. Wood, Lalit Pandey, Samantha M.W. Wood
What are the core learning algorithms in brains? Nativists propose that intelligence emerges from innate domain-specific knowledge systems, whereas empiricists propose that intelligence emerges from domain-general systems that learn domain-specific knowledge from experience. We address this debate by reviewing digital twin studies designed to reverse engineer the learning algorithms in newborn brains. In digital twin studies, newborn animals and artificial agents are raised in the same environments and tested with the same tasks, permitting direct comparison of their learning abilities. Supporting empiricism, digital twin studies show that domain-general algorithms learn animal-like object perception when trained on the first-person visual experiences of newborn animals. Supporting nativism, digital twin studies show that domain-general algorithms produce innate domain-specific knowledge when trained on prenatal experiences (retinal waves). We argue that learning across humans, animals, and machines can be explained by a universal principle, which we call space-time fitting. Space-time fitting explains both empiricist and nativist phenomena, providing a unified framework for understanding the origins of intelligence.
大脑的核心学习算法是什么?先天论者认为智力来自于与生俱来的特定领域知识系统,而经验论者则认为智力来自于从经验中学习特定领域知识的通用领域系统。我们通过回顾旨在反向设计新生儿大脑学习算法的数字孪生研究,来探讨这一争论。在数字孪生研究中,新生动物和人工代理人在相同的环境中长大,并接受相同任务的测试,从而可以直接比较它们的学习能力。支持经验主义的数字孪生研究表明,当根据新生动物的第一人称视觉经验进行训练时,领域通用算法可以学习到类似动物的物体感知能力。支持原生论的数字孪生研究表明,当根据出生前的经验(视网膜波)进行训练时,领域通用算法会产生与生俱来的特定领域知识。我们认为,人类、动物和机器之间的学习可以用一个普遍原则来解释,我们称之为时空拟合。时空拟合同时解释了经验主义和本位主义现象,为理解智能的起源提供了一个统一的框架。
{"title":"Digital Twin Studies for Reverse Engineering the Origins of Visual Intelligence","authors":"Justin N. Wood, Lalit Pandey, Samantha M.W. Wood","doi":"10.1146/annurev-vision-101322-103628","DOIUrl":"https://doi.org/10.1146/annurev-vision-101322-103628","url":null,"abstract":"What are the core learning algorithms in brains? Nativists propose that intelligence emerges from innate domain-specific knowledge systems, whereas empiricists propose that intelligence emerges from domain-general systems that learn domain-specific knowledge from experience. We address this debate by reviewing digital twin studies designed to reverse engineer the learning algorithms in newborn brains. In digital twin studies, newborn animals and artificial agents are raised in the same environments and tested with the same tasks, permitting direct comparison of their learning abilities. Supporting empiricism, digital twin studies show that domain-general algorithms learn animal-like object perception when trained on the first-person visual experiences of newborn animals. Supporting nativism, digital twin studies show that domain-general algorithms produce innate domain-specific knowledge when trained on prenatal experiences (retinal waves). We argue that learning across humans, animals, and machines can be explained by a universal principle, which we call space-time fitting. Space-time fitting explains both empiricist and nativist phenomena, providing a unified framework for understanding the origins of intelligence.","PeriodicalId":48658,"journal":{"name":"Annual Review of Vision Science","volume":"210 1","pages":""},"PeriodicalIF":6.0,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142260929","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Informing Endpoints for Clinical Trials of Geographic Atrophy 为地理萎缩临床试验的终点提供依据
IF 6 2区 医学 Q1 NEUROSCIENCES Pub Date : 2024-09-18 DOI: 10.1146/annurev-vision-101922-045110
Eleonora M. Lad, Monika Fleckenstein, Frank G. Holz, Liangbo Shen, Lucian V. Del Priore, Rufino Silva, Giovanni Staurenghi, Nadia Waheed, Usha Chakravarthy
Geographic atrophy (GA), the non-neovascular advanced form of age-related macular degeneration, remains an important disease area in which treatment needs are currently unmet. Recent clinical trials using drugs that target the complement pathway have shown modest yet consistent reductions in GA expansion but without commensurate changes in measures of visual function. In this review, we summarize information from the wide range of studies describing the characteristics of GA morphology and enumerate the factors influencing the growth rates of lesions and the directionality of expansion. In addition, we review the relationship between GA growth and the various measures of vision that reflect changes in function. We consider the reasons for the discordance between the anatomical and functional endpoints in current use and discuss methods to align these key outcomes.
地理萎缩(GA)是老年性黄斑变性的一种非新血管性晚期形式,目前仍是一个治疗需求尚未得到满足的重要疾病领域。最近使用靶向补体途径的药物进行的临床试验显示,GA 的扩大程度虽有轻微但却持续减少,但视觉功能却没有相应的变化。在这篇综述中,我们总结了描述 GA 形态特征的大量研究信息,并列举了影响病变生长速度和扩展方向的因素。此外,我们还回顾了GA生长与反映功能变化的各种视力测量指标之间的关系。我们考虑了目前使用的解剖终点和功能终点不一致的原因,并讨论了调整这些关键结果的方法。
{"title":"Informing Endpoints for Clinical Trials of Geographic Atrophy","authors":"Eleonora M. Lad, Monika Fleckenstein, Frank G. Holz, Liangbo Shen, Lucian V. Del Priore, Rufino Silva, Giovanni Staurenghi, Nadia Waheed, Usha Chakravarthy","doi":"10.1146/annurev-vision-101922-045110","DOIUrl":"https://doi.org/10.1146/annurev-vision-101922-045110","url":null,"abstract":"Geographic atrophy (GA), the non-neovascular advanced form of age-related macular degeneration, remains an important disease area in which treatment needs are currently unmet. Recent clinical trials using drugs that target the complement pathway have shown modest yet consistent reductions in GA expansion but without commensurate changes in measures of visual function. In this review, we summarize information from the wide range of studies describing the characteristics of GA morphology and enumerate the factors influencing the growth rates of lesions and the directionality of expansion. In addition, we review the relationship between GA growth and the various measures of vision that reflect changes in function. We consider the reasons for the discordance between the anatomical and functional endpoints in current use and discuss methods to align these key outcomes.","PeriodicalId":48658,"journal":{"name":"Annual Review of Vision Science","volume":"85 1","pages":""},"PeriodicalIF":6.0,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142260876","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cellular and Molecular Mechanisms Regulating Retinal Synapse Development 调节视网膜突触发育的细胞和分子机制
IF 6 2区 医学 Q1 NEUROSCIENCES Pub Date : 2024-09-18 DOI: 10.1146/annurev-vision-102122-105721
Whitney A. Stevens-Sostre, Mrinalini Hoon
Synapse formation within the retinal circuit ensures that distinct neuronal types can communicate efficiently to process visual signals. Synapses thus form the core of the visual computations performed by the retinal circuit. Retinal synapses are diverse but can be broadly categorized into multipartner ribbon synapses and 1:1 conventional synapses. In this article, we review our current understanding of the cellular and molecular mechanisms that regulate the functional establishment of mammalian retinal synapses, including the role of adhesion proteins, synaptic proteins, extracellular matrix and cytoskeletal-associated proteins, and activity-dependent cues. We outline future directions and areas of research that will expand our knowledge of these mechanisms. Understanding the regulators moderating synapse formation and function not only reveals the integrated developmental processes that establish retinal circuits, but also divulges the identity of mechanisms that could be engaged during disease and degeneration.
视网膜回路中突触的形成确保了不同类型的神经元能够有效地进行交流,以处理视觉信号。因此,突触构成了视网膜回路进行视觉计算的核心。视网膜突触多种多样,但大致可分为多伙伴带状突触和 1:1 传统突触。在这篇文章中,我们回顾了目前对调节哺乳动物视网膜突触功能建立的细胞和分子机制的理解,包括粘附蛋白、突触蛋白、细胞外基质和细胞骨架相关蛋白以及活动依赖性线索的作用。我们概述了未来的研究方向和领域,这些研究将拓展我们对这些机制的认识。了解调节突触形成和功能的调节因子不仅能揭示建立视网膜电路的综合发育过程,还能揭示疾病和退化过程中可能涉及的机制。
{"title":"Cellular and Molecular Mechanisms Regulating Retinal Synapse Development","authors":"Whitney A. Stevens-Sostre, Mrinalini Hoon","doi":"10.1146/annurev-vision-102122-105721","DOIUrl":"https://doi.org/10.1146/annurev-vision-102122-105721","url":null,"abstract":"Synapse formation within the retinal circuit ensures that distinct neuronal types can communicate efficiently to process visual signals. Synapses thus form the core of the visual computations performed by the retinal circuit. Retinal synapses are diverse but can be broadly categorized into multipartner ribbon synapses and 1:1 conventional synapses. In this article, we review our current understanding of the cellular and molecular mechanisms that regulate the functional establishment of mammalian retinal synapses, including the role of adhesion proteins, synaptic proteins, extracellular matrix and cytoskeletal-associated proteins, and activity-dependent cues. We outline future directions and areas of research that will expand our knowledge of these mechanisms. Understanding the regulators moderating synapse formation and function not only reveals the integrated developmental processes that establish retinal circuits, but also divulges the identity of mechanisms that could be engaged during disease and degeneration.","PeriodicalId":48658,"journal":{"name":"Annual Review of Vision Science","volume":"24 1","pages":""},"PeriodicalIF":6.0,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142260928","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Digital Image Sensor Evolution and New Frontiers 数字图像传感器的演变与新领域
IF 6 2区 医学 Q1 NEUROSCIENCES Pub Date : 2024-09-18 DOI: 10.1146/annurev-vision-101322-105538
Eric R. Fossum, Nobukazu Teranishi, Albert J.P. Theuwissen
This article reviews nearly 60 years of solid-state image sensor evolution and identifies potential new frontiers in the field. From early work in the 1960s, through the development of charge-coupled device image sensors, to the complementary metal oxide semiconductor image sensors now ubiquitous in our lives, we discuss highlights in the evolutionary chain. New frontiers, such as 3D stacked technology, photon-counting technology, and others, are briefly discussed.
本文回顾了固态图像传感器近 60 年的发展历程,并指出了该领域潜在的新前沿。从 20 世纪 60 年代的早期工作,到电荷耦合器件图像传感器的开发,再到如今在我们生活中无处不在的互补金属氧化物半导体图像传感器,我们讨论了演进链中的亮点。我们还简要讨论了三维堆叠技术、光子计数技术等新前沿技术。
{"title":"Digital Image Sensor Evolution and New Frontiers","authors":"Eric R. Fossum, Nobukazu Teranishi, Albert J.P. Theuwissen","doi":"10.1146/annurev-vision-101322-105538","DOIUrl":"https://doi.org/10.1146/annurev-vision-101322-105538","url":null,"abstract":"This article reviews nearly 60 years of solid-state image sensor evolution and identifies potential new frontiers in the field. From early work in the 1960s, through the development of charge-coupled device image sensors, to the complementary metal oxide semiconductor image sensors now ubiquitous in our lives, we discuss highlights in the evolutionary chain. New frontiers, such as 3D stacked technology, photon-counting technology, and others, are briefly discussed.","PeriodicalId":48658,"journal":{"name":"Annual Review of Vision Science","volume":"17 1","pages":""},"PeriodicalIF":6.0,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142260927","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impact of Glaucomatous Ganglion Cell Damage on Central Visual Function 青光眼神经节细胞损伤对中枢视觉功能的影响
IF 6 2区 医学 Q1 NEUROSCIENCES Pub Date : 2024-09-18 DOI: 10.1146/annurev-vision-110223-123044
MiYoung Kwon
Glaucoma, a leading cause of irreversible blindness, is characterized by the progressive loss of retinal ganglion cells (RGCs) and subsequent visual field defects. RGCs, as the final output neurons of the retina, perform key computations underpinning human pattern vision, such as contrast coding. Conventionally, glaucoma has been associated with peripheral vision loss, and thus, relatively little attention has been paid to deficits in central vision. However, recent advancements in retinal imaging techniques have significantly bolstered research into glaucomatous damage of the macula, revealing that it is prevalent even in the early stages of glaucoma. Thus, it is an opportune time to explore how glaucomatous damage undermines the perceptual processes associated with central visual function. This review showcases recent studies addressing central dysfunction in the early and moderate stages of glaucoma. It further emphasizes the need to characterize glaucomatous damage in both central and peripheral vision, as they jointly affect an individual's everyday activities.
青光眼是导致不可逆失明的主要原因,其特征是视网膜神经节细胞(RGC)的逐渐丧失和随之而来的视野缺损。视网膜神经节细胞作为视网膜的最终输出神经元,执行着人类模式视觉的关键计算,如对比度编码。传统上,青光眼与周边视力丧失有关,因此对中心视力缺陷的关注相对较少。然而,最近视网膜成像技术的进步极大地促进了对黄斑部青光眼损害的研究,揭示出即使在青光眼的早期阶段,黄斑部青光眼损害也很普遍。因此,现在正是探讨青光眼损害如何破坏与中枢视觉功能相关的知觉过程的大好时机。本综述展示了针对青光眼早期和中度阶段中枢功能障碍的最新研究。它进一步强调了描述青光眼对中心和周边视觉的损害的必要性,因为它们共同影响着一个人的日常活动。
{"title":"Impact of Glaucomatous Ganglion Cell Damage on Central Visual Function","authors":"MiYoung Kwon","doi":"10.1146/annurev-vision-110223-123044","DOIUrl":"https://doi.org/10.1146/annurev-vision-110223-123044","url":null,"abstract":"Glaucoma, a leading cause of irreversible blindness, is characterized by the progressive loss of retinal ganglion cells (RGCs) and subsequent visual field defects. RGCs, as the final output neurons of the retina, perform key computations underpinning human pattern vision, such as contrast coding. Conventionally, glaucoma has been associated with peripheral vision loss, and thus, relatively little attention has been paid to deficits in central vision. However, recent advancements in retinal imaging techniques have significantly bolstered research into glaucomatous damage of the macula, revealing that it is prevalent even in the early stages of glaucoma. Thus, it is an opportune time to explore how glaucomatous damage undermines the perceptual processes associated with central visual function. This review showcases recent studies addressing central dysfunction in the early and moderate stages of glaucoma. It further emphasizes the need to characterize glaucomatous damage in both central and peripheral vision, as they jointly affect an individual's everyday activities.","PeriodicalId":48658,"journal":{"name":"Annual Review of Vision Science","volume":"26 1","pages":""},"PeriodicalIF":6.0,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142260926","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Quest for an Integrated Set of Neural Mechanisms Underlying Object Recognition in Primates. 探索灵长类动物物体识别的综合神经机制。
IF 5 2区 医学 Q1 NEUROSCIENCES Pub Date : 2024-09-01 Epub Date: 2024-09-02 DOI: 10.1146/annurev-vision-112823-030616
Kohitij Kar, James J DiCarlo

Inferences made about objects via vision, such as rapid and accurate categorization, are core to primate cognition despite the algorithmic challenge posed by varying viewpoints and scenes. Until recently, the brain mechanisms that support these capabilities were deeply mysterious. However, over the past decade, this scientific mystery has been illuminated by the discovery and development of brain-inspired, image-computable, artificial neural network (ANN) systems that rival primates in these behavioral feats. Apart from fundamentally changing the landscape of artificial intelligence, modified versions of these ANN systems are the current leading scientific hypotheses of an integrated set of mechanisms in the primate ventral visual stream that support core object recognition. What separates brain-mapped versions of these systems from prior conceptual models is that they are sensory computable, mechanistic, anatomically referenced, and testable (SMART). In this article, we review and provide perspective on the brain mechanisms addressed by the current leading SMART models. We review their empirical brain and behavioral alignment successes and failures, discuss the next frontiers for an even more accurate mechanistic understanding, and outline the likely applications.

尽管不同的视角和场景给算法带来了挑战,但通过视觉对物体进行推断(如快速而准确的分类)是灵长类动物认知的核心。直到最近,支持这些能力的大脑机制仍深藏不露。然而,在过去的十年中,这一科学之谜已被受大脑启发的、可进行图像计算的人工神经网络(ANN)系统的发现和发展所揭开,这些系统在这些行为功能方面可与灵长类动物媲美。除了从根本上改变了人工智能的面貌之外,这些人工神经网络系统的改进版也是目前科学界对灵长类动物腹侧视觉流中支持核心物体识别的一套综合机制的主要假设。这些系统的脑图版本与之前的概念模型的不同之处在于,它们具有感官可计算性、机械性、解剖参考性和可测试性(SMART)。在本文中,我们将对当前领先的 SMART 模型所涉及的大脑机制进行回顾和透视。我们回顾了这些模型在大脑和行为配准方面的成功和失败经验,讨论了更准确的机理理解的下一个前沿领域,并概述了可能的应用。
{"title":"The Quest for an Integrated Set of Neural Mechanisms Underlying Object Recognition in Primates.","authors":"Kohitij Kar, James J DiCarlo","doi":"10.1146/annurev-vision-112823-030616","DOIUrl":"10.1146/annurev-vision-112823-030616","url":null,"abstract":"<p><p>Inferences made about objects via vision, such as rapid and accurate categorization, are core to primate cognition despite the algorithmic challenge posed by varying viewpoints and scenes. Until recently, the brain mechanisms that support these capabilities were deeply mysterious. However, over the past decade, this scientific mystery has been illuminated by the discovery and development of brain-inspired, image-computable, artificial neural network (ANN) systems that rival primates in these behavioral feats. Apart from fundamentally changing the landscape of artificial intelligence, modified versions of these ANN systems are the current leading scientific hypotheses of an integrated set of mechanisms in the primate ventral visual stream that support core object recognition. What separates brain-mapped versions of these systems from prior conceptual models is that they are sensory computable, mechanistic, anatomically referenced, and testable (SMART). In this article, we review and provide perspective on the brain mechanisms addressed by the current leading SMART models. We review their empirical brain and behavioral alignment successes and failures, discuss the next frontiers for an even more accurate mechanistic understanding, and outline the likely applications.</p>","PeriodicalId":48658,"journal":{"name":"Annual Review of Vision Science","volume":" ","pages":"91-121"},"PeriodicalIF":5.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141477753","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Absorption, Storage, and Transport of Ocular Carotenoids and Retinoids. 眼部类胡萝卜素和类视黄醇的吸收、储存和运输。
IF 5 2区 医学 Q1 NEUROSCIENCES Pub Date : 2024-09-01 Epub Date: 2024-09-02 DOI: 10.1146/annurev-vision-102122-101846
Johannes von Lintig, Sepalika Bandara

Carotenoids, yellow and red pigments found abundantly in nature, play essential roles in various aspects of human physiology. They serve as critical molecules in vision by functioning as antioxidants and as filters for blue light within the retina. Furthermore, carotenoids are the natural precursors of vitamin A, which is indispensable for the synthesis of retinaldehyde, the visual chromophore, and retinoic acid, a small molecule that regulates gene expression. Insufficient levels of carotenoids and retinoids have been linked to age-related macular degeneration and xerophthalmia, respectively. Nevertheless, the mechanisms by which the eye maintains carotenoid and retinoid homeostasis have remained a mystery. Recent breakthroughs identified the molecular players involved in this process and provided valuable biochemical insights into their functioning. Mutations in the corresponding genes disrupt the homeostasis of carotenoids and retinoids, leading to visual system pathologies. This review aims to consolidate our current understanding of these pathways, including their regulatory principles.

类胡萝卜素是自然界中大量存在的黄色和红色色素,在人体生理的各个方面发挥着重要作用。类胡萝卜素是视觉中的重要分子,具有抗氧化和过滤视网膜中蓝光的功能。此外,类胡萝卜素还是维生素 A 的天然前体,而维生素 A 是合成视觉发色团视黄醛和视黄酸(一种调节基因表达的小分子)不可或缺的物质。类胡萝卜素和视黄酸含量不足分别与老年性黄斑变性和干眼症有关。然而,眼睛维持类胡萝卜素和类视黄醇平衡的机制一直是个谜。最近的突破性研究发现了参与这一过程的分子角色,并为了解它们的功能提供了宝贵的生化信息。相应基因的突变会破坏类胡萝卜素和类视黄醇的平衡,导致视觉系统病变。本综述旨在巩固我们目前对这些途径的理解,包括其调控原理。
{"title":"The Absorption, Storage, and Transport of Ocular Carotenoids and Retinoids.","authors":"Johannes von Lintig, Sepalika Bandara","doi":"10.1146/annurev-vision-102122-101846","DOIUrl":"10.1146/annurev-vision-102122-101846","url":null,"abstract":"<p><p>Carotenoids, yellow and red pigments found abundantly in nature, play essential roles in various aspects of human physiology. They serve as critical molecules in vision by functioning as antioxidants and as filters for blue light within the retina. Furthermore, carotenoids are the natural precursors of vitamin A, which is indispensable for the synthesis of retinaldehyde, the visual chromophore, and retinoic acid, a small molecule that regulates gene expression. Insufficient levels of carotenoids and retinoids have been linked to age-related macular degeneration and xerophthalmia, respectively. Nevertheless, the mechanisms by which the eye maintains carotenoid and retinoid homeostasis have remained a mystery. Recent breakthroughs identified the molecular players involved in this process and provided valuable biochemical insights into their functioning. Mutations in the corresponding genes disrupt the homeostasis of carotenoids and retinoids, leading to visual system pathologies. This review aims to consolidate our current understanding of these pathways, including their regulatory principles.</p>","PeriodicalId":48658,"journal":{"name":"Annual Review of Vision Science","volume":" ","pages":"323-346"},"PeriodicalIF":5.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141493943","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Retina-Based Visual Cycle. 基于视网膜的视觉循环
IF 5 2区 医学 Q1 NEUROSCIENCES Pub Date : 2024-09-01 Epub Date: 2024-09-02 DOI: 10.1146/annurev-vision-100820-083937
Shinya Sato, Vladimir J Kefalov

The continuous function of vertebrate photoreceptors requires regeneration of their visual pigment following its destruction upon activation by light (photobleaching). For rods, the chromophore required for the regeneration of rhodopsin is derived from the adjacent retinal pigmented epithelium (RPE) cells through a series of reactions collectively known as the RPE visual cycle. Mounting biochemical and functional evidence demonstrates that, for cones, pigment regeneration is supported by the parallel supply with chromophore by two pathways-the canonical RPE visual cycle and a second, cone-specific retina visual cycle that involves the Müller glial cells in the neural retina. In this article, we review historical information that led to the discovery of the retina visual cycle and discuss what is currently known about the reactions and molecular components of this pathway and its functional role in supporting cone-mediated vision.

脊椎动物感光器的持续功能要求其视觉色素在被光激活(光漂白)破坏后再生。对于视杆细胞来说,再生视紫红质所需的发色团来自邻近的视网膜色素上皮(RPE)细胞,通过一系列反应生成,这些反应被统称为 RPE 视觉循环。越来越多的生化和功能性证据表明,对于视锥而言,色素再生是由两条途径平行供应的发色团支持的--一条是典型的 RPE 视觉循环,另一条是视锥特有的视网膜视觉循环,涉及神经视网膜中的 Müller 神经胶质细胞。在这篇文章中,我们回顾了导致发现视网膜视觉周期的历史信息,并讨论了目前对这一途径的反应和分子成分及其在支持视锥介导的视觉中的功能作用的了解。
{"title":"The Retina-Based Visual Cycle.","authors":"Shinya Sato, Vladimir J Kefalov","doi":"10.1146/annurev-vision-100820-083937","DOIUrl":"10.1146/annurev-vision-100820-083937","url":null,"abstract":"<p><p>The continuous function of vertebrate photoreceptors requires regeneration of their visual pigment following its destruction upon activation by light (photobleaching). For rods, the chromophore required for the regeneration of rhodopsin is derived from the adjacent retinal pigmented epithelium (RPE) cells through a series of reactions collectively known as the RPE visual cycle. Mounting biochemical and functional evidence demonstrates that, for cones, pigment regeneration is supported by the parallel supply with chromophore by two pathways-the canonical RPE visual cycle and a second, cone-specific retina visual cycle that involves the Müller glial cells in the neural retina. In this article, we review historical information that led to the discovery of the retina visual cycle and discuss what is currently known about the reactions and molecular components of this pathway and its functional role in supporting cone-mediated vision.</p>","PeriodicalId":48658,"journal":{"name":"Annual Review of Vision Science","volume":" ","pages":"293-321"},"PeriodicalIF":5.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140899969","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Central Serous Chorioretinopathy: Epidemiology, Genetics and Clinical Features. 中心性浆液性脉络膜视网膜病变:流行病学、遗传学和临床特征。
IF 5 2区 医学 Q1 NEUROSCIENCES Pub Date : 2024-09-01 Epub Date: 2024-09-02 DOI: 10.1146/annurev-vision-102122-102907
Adnan H Khan, Andrew J Lotery

Central serous chorioretinopathy (CSCR) is the fourth most common medical retinal disease. Moderate vision loss occurs in approximately one-third of patients who have the chronic form of the disease. CSCR has a multifactorial etiology, with acquired risk factors and increasing evidence of genetic susceptibility factors. The detection of new gene variants in CSCR and association of these variants with age-related macular degeneration provide insights into possible disease mechanisms. The contribution of multimodal ocular imaging and associated research studies to the modern-day clinical investigation of CSCR has been significant. This review aims to provide an overview of the most significant epidemiological and genetic studies of CSCR, in addition to describing its clinical and multimodal imaging features. The review also provides an update of the latest evidence from studies investigating pathophysiological mechanisms in CSCR and current opinions on multimodal imaging to better classify this complex retinal disease.

中心性浆液性脉络膜视网膜病变(CSCR)是第四大最常见的视网膜内科疾病。大约三分之一的慢性患者会出现中度视力下降。CSCR 的病因是多因素的,既有获得性风险因素,也有越来越多的证据表明存在遗传易感因素。CSCR 中新基因变异的发现以及这些变异与老年性黄斑变性的关联为了解可能的疾病机制提供了线索。多模态眼部成像和相关研究对当代 CSCR 的临床研究做出了重大贡献。本综述旨在概述 CSCR 最重要的流行病学和遗传学研究,并介绍其临床和多模态成像特征。该综述还提供了研究 CSCR 病理生理机制的最新证据,以及目前关于多模态成像的观点,以便更好地对这种复杂的视网膜疾病进行分类。
{"title":"Central Serous Chorioretinopathy: Epidemiology, Genetics and Clinical Features.","authors":"Adnan H Khan, Andrew J Lotery","doi":"10.1146/annurev-vision-102122-102907","DOIUrl":"10.1146/annurev-vision-102122-102907","url":null,"abstract":"<p><p>Central serous chorioretinopathy (CSCR) is the fourth most common medical retinal disease. Moderate vision loss occurs in approximately one-third of patients who have the chronic form of the disease. CSCR has a multifactorial etiology, with acquired risk factors and increasing evidence of genetic susceptibility factors. The detection of new gene variants in CSCR and association of these variants with age-related macular degeneration provide insights into possible disease mechanisms. The contribution of multimodal ocular imaging and associated research studies to the modern-day clinical investigation of CSCR has been significant. This review aims to provide an overview of the most significant epidemiological and genetic studies of CSCR, in addition to describing its clinical and multimodal imaging features. The review also provides an update of the latest evidence from studies investigating pathophysiological mechanisms in CSCR and current opinions on multimodal imaging to better classify this complex retinal disease.</p>","PeriodicalId":48658,"journal":{"name":"Annual Review of Vision Science","volume":" ","pages":"477-505"},"PeriodicalIF":5.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140945877","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Annual Review of Vision Science
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1