Michael Clarke, Abigail Bellamy-Carter, Ferdinando Malagreca, Jack Hart, Stephen P. Argent, James N. O'Shea, David B. Amabilino and Alex Saywell
{"title":"On-surface polymerisation and self-assembly of DPP-based molecular wires†","authors":"Michael Clarke, Abigail Bellamy-Carter, Ferdinando Malagreca, Jack Hart, Stephen P. Argent, James N. O'Shea, David B. Amabilino and Alex Saywell","doi":"10.1039/D2ME00232A","DOIUrl":null,"url":null,"abstract":"<p >The incorporation of organic semiconducting materials within solid-state electronic devices provides a potential route to highly efficient photovoltaics, transistors, and light emitting diodes. Key to the realisation of such devices is efficient intramolecular charge transport within molecular species, as well as intermolecular/interdomain transport, which necessitates highly ordered supramolecular domains. The on-surface synthesis of polymeric organic materials (incorporating donor and/or acceptor moieties) is one pathway towards the production of highly ordered molecular domains. Here we study the formation of a polymer based upon a diketopyrrolopyrrole (DPP) monomer unit, possessing aryl-halide groups to facilitate on-surface covalent coupling and functionalised with alkyl chains which drive the self-assembly of both the monomer material prior to reaction and the domains of polymeric material following on-surface synthesis. The self-assembled structure of close-packed domains of the monomer units, and the ordered polymers, are investigated and characterised using scanning tunnelling microscopy and X-ray photoelectron spectroscopy.</p>","PeriodicalId":91,"journal":{"name":"Molecular Systems Design & Engineering","volume":" 5","pages":" 681-689"},"PeriodicalIF":3.2000,"publicationDate":"2023-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2023/me/d2me00232a?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Systems Design & Engineering","FirstCategoryId":"5","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2023/me/d2me00232a","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The incorporation of organic semiconducting materials within solid-state electronic devices provides a potential route to highly efficient photovoltaics, transistors, and light emitting diodes. Key to the realisation of such devices is efficient intramolecular charge transport within molecular species, as well as intermolecular/interdomain transport, which necessitates highly ordered supramolecular domains. The on-surface synthesis of polymeric organic materials (incorporating donor and/or acceptor moieties) is one pathway towards the production of highly ordered molecular domains. Here we study the formation of a polymer based upon a diketopyrrolopyrrole (DPP) monomer unit, possessing aryl-halide groups to facilitate on-surface covalent coupling and functionalised with alkyl chains which drive the self-assembly of both the monomer material prior to reaction and the domains of polymeric material following on-surface synthesis. The self-assembled structure of close-packed domains of the monomer units, and the ordered polymers, are investigated and characterised using scanning tunnelling microscopy and X-ray photoelectron spectroscopy.
期刊介绍:
Molecular Systems Design & Engineering provides a hub for cutting-edge research into how understanding of molecular properties, behaviour and interactions can be used to design and assemble better materials, systems, and processes to achieve specific functions. These may have applications of technological significance and help address global challenges.