Increased Expression of EZH2 Is Mediated by Higher Glycolysis and mTORC1 Activation in Lupus CD4+ T Cells.

Immunometabolism Pub Date : 2020-01-01 Epub Date: 2020-04-09 DOI:10.20900/immunometab20200013
Xiaoqing Zheng, Pei-Suen Tsou, Amr H Sawalha
{"title":"Increased Expression of EZH2 Is Mediated by Higher Glycolysis and mTORC1 Activation in Lupus CD4<sup>+</sup> T Cells.","authors":"Xiaoqing Zheng,&nbsp;Pei-Suen Tsou,&nbsp;Amr H Sawalha","doi":"10.20900/immunometab20200013","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>EZH2 is overexpressed in CD4<sup>+</sup> T cells from patients with systemic lupus erythematosus (SLE). Increased disease activity in SLE patients is associated with a proinflammatory epigenetic shift in naïve CD4<sup>+</sup> T cells, likely mediated by EZH2. Here we aim to understand the upstream mechanisms underlying EZH2 overexpression in SLE CD4<sup>+</sup> T cells.</p><p><strong>Methods: </strong>Naïve CD4<sup>+</sup> T cells were isolated from SLE patients and then stimulated with anti-CD3/anti-CD28. qPCR and Western blotting were used to measure mRNA and protein expression levels, respectively. 2-Deoxy-d-glucose (2-DG) was used to inhibit glycolysis. mTORC1 signaling was inhibited using rapamycin. Oxidative stress was induced by H<sub>2</sub>O<sub>2</sub>.</p><p><strong>Results: </strong>Because glycolysis is increased in SLE CD4<sup>+</sup> T cells and glycolysis regulates miR-26a and miR-101, which target EZH2, we examined the effect of inhibiting glycolysis on EZH2 expression. 2-DG significantly inhibited EZH2 expression in SLE CD4<sup>+</sup> T cells. In addition, 2-DG restored the expression of miR-26a and miR-101, suggesting that suppression of EZH2 by 2-DG occurs at the post-transcriptional level. Because mTORC1 is activated in SLE CD4<sup>+</sup> T cells in part due to increased oxidative stress, and mTORC1 activation increases glycolysis, we hypothesized that mTORC1 mediates increased EZH2 expression. Indeed, inhibiting mTORC1 increased miR-26a and miR-101 and suppressed EZH2 expression in SLE CD4<sup>+</sup> T cells. Further, H<sub>2</sub>O<sub>2</sub> treatment increased EZH2 expression, however, this effect appears to be independent of miR-26a and miR-101.</p><p><strong>Conclusion: </strong>Increased EZH2 is mediated by activation of mTORC1 and increased glycolysis in SLE CD4<sup>+</sup> T cells. Therapeutic effects from inhibiting mTOR or glycolysis in SLE might be in part mediated by suppression of EZH2.</p>","PeriodicalId":13361,"journal":{"name":"Immunometabolism","volume":"2 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7213603/pdf/","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Immunometabolism","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20900/immunometab20200013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/4/9 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

Objective: EZH2 is overexpressed in CD4+ T cells from patients with systemic lupus erythematosus (SLE). Increased disease activity in SLE patients is associated with a proinflammatory epigenetic shift in naïve CD4+ T cells, likely mediated by EZH2. Here we aim to understand the upstream mechanisms underlying EZH2 overexpression in SLE CD4+ T cells.

Methods: Naïve CD4+ T cells were isolated from SLE patients and then stimulated with anti-CD3/anti-CD28. qPCR and Western blotting were used to measure mRNA and protein expression levels, respectively. 2-Deoxy-d-glucose (2-DG) was used to inhibit glycolysis. mTORC1 signaling was inhibited using rapamycin. Oxidative stress was induced by H2O2.

Results: Because glycolysis is increased in SLE CD4+ T cells and glycolysis regulates miR-26a and miR-101, which target EZH2, we examined the effect of inhibiting glycolysis on EZH2 expression. 2-DG significantly inhibited EZH2 expression in SLE CD4+ T cells. In addition, 2-DG restored the expression of miR-26a and miR-101, suggesting that suppression of EZH2 by 2-DG occurs at the post-transcriptional level. Because mTORC1 is activated in SLE CD4+ T cells in part due to increased oxidative stress, and mTORC1 activation increases glycolysis, we hypothesized that mTORC1 mediates increased EZH2 expression. Indeed, inhibiting mTORC1 increased miR-26a and miR-101 and suppressed EZH2 expression in SLE CD4+ T cells. Further, H2O2 treatment increased EZH2 expression, however, this effect appears to be independent of miR-26a and miR-101.

Conclusion: Increased EZH2 is mediated by activation of mTORC1 and increased glycolysis in SLE CD4+ T cells. Therapeutic effects from inhibiting mTOR or glycolysis in SLE might be in part mediated by suppression of EZH2.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
狼疮CD4+ T细胞中糖酵解和mTORC1活化介导EZH2表达增加
目的:EZH2在系统性红斑狼疮(SLE)患者的CD4+ T细胞中过表达。SLE患者疾病活动性增加与naïve CD4+ T细胞的促炎表观遗传转移相关,可能由EZH2介导。本研究旨在了解EZH2在SLE CD4+ T细胞中过表达的上游机制。方法:从SLE患者体内分离CD4+ T细胞Naïve,然后用抗cd3 /抗cd28刺激。采用qPCR和Western blotting分别检测mRNA和蛋白的表达水平。2-脱氧-d-葡萄糖(2-DG)抑制糖酵解。雷帕霉素可抑制mTORC1信号传导。H2O2诱导氧化应激。结果:由于糖酵解在SLE CD4+ T细胞中增加,糖酵解调节靶向EZH2的miR-26a和miR-101,我们检测了抑制糖酵解对EZH2表达的影响。2-DG显著抑制SLE CD4+ T细胞中EZH2的表达。此外,2-DG恢复了miR-26a和miR-101的表达,表明2-DG对EZH2的抑制发生在转录后水平。由于mTORC1在SLE CD4+ T细胞中被激活,部分原因是氧化应激增加,而mTORC1激活会增加糖酵解,我们假设mTORC1介导EZH2表达增加。事实上,抑制mTORC1增加了miR-26a和miR-101,抑制了SLE CD4+ T细胞中EZH2的表达。此外,H2O2处理增加了EZH2的表达,然而,这种影响似乎与miR-26a和miR-101无关。结论:SLE CD4+ T细胞中EZH2的升高是通过mTORC1的激活和糖酵解的增加介导的。抑制mTOR或糖酵解对SLE的治疗作用可能部分是由抑制EZH2介导的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Regulatory T cells and bioenergetics of peripheral blood mononuclear cells linked to pediatric obesity Targeting Nuclear Receptors for TH17-Mediated Inflammation: REV-ERBerations of Circadian Rhythm and Metabolism. A Compass to Guide Insights into TH17 Cellular Metabolism and Autoimmunity. Myeloid Metabolism as a New Target for Rejuvenation?-Comments on Restoring Metabolism of Myeloid Cells Reverses Cognitive Decline in Ageing. Nature. 2021 Feb;590(7844):122-128. Does Altered Cellular Metabolism Underpin the Normal Changes to the Maternal Immune System during Pregnancy?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1