Diffeomorphic Lung Registration Using Deep CNNs and Reinforced Learning.

Jorge Onieva Onieva, Berta Marti-Fuster, María Pedrero de la Puente, Raúl San José Estépar
{"title":"Diffeomorphic Lung Registration Using Deep CNNs and Reinforced Learning.","authors":"Jorge Onieva Onieva,&nbsp;Berta Marti-Fuster,&nbsp;María Pedrero de la Puente,&nbsp;Raúl San José Estépar","doi":"10.1007/978-3-030-00946-5_28","DOIUrl":null,"url":null,"abstract":"<p><p>Image registration is a well-known problem in the field of medical imaging. In this paper, we focus on the registration of chest inspiratory and expiratory computed tomography (CT) scans from the same patient. Our method recovers the diffeomorphic elastic displacement vector field (DVF) by jointly regressing the direct and the inverse transformation. Our architecture is based on the RegNet network but we implement a reinforced learning strategy that can accommodate a large training dataset. Our results show that our method performs with a lower estimation error for the same number of epochs than the RegNet approach.</p>","PeriodicalId":93006,"journal":{"name":"Image analysis for moving organ, breast, and thoracic images : third International Workshop, RAMBO 2018, fourth International Workshop, BIA 2018, and first International Workshop, TIA 2018, held in conjunction with MICCAI 2018, Granada,...","volume":"11040 ","pages":"284-294"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/978-3-030-00946-5_28","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Image analysis for moving organ, breast, and thoracic images : third International Workshop, RAMBO 2018, fourth International Workshop, BIA 2018, and first International Workshop, TIA 2018, held in conjunction with MICCAI 2018, Granada,...","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-030-00946-5_28","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/9/12 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Image registration is a well-known problem in the field of medical imaging. In this paper, we focus on the registration of chest inspiratory and expiratory computed tomography (CT) scans from the same patient. Our method recovers the diffeomorphic elastic displacement vector field (DVF) by jointly regressing the direct and the inverse transformation. Our architecture is based on the RegNet network but we implement a reinforced learning strategy that can accommodate a large training dataset. Our results show that our method performs with a lower estimation error for the same number of epochs than the RegNet approach.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度cnn和强化学习的异胚肺配准。
图像配准是医学成像领域中一个众所周知的问题。在本文中,我们着重于注册胸部吸气和呼气的计算机断层扫描(CT)从同一患者。该方法通过对正变换和逆变换的联合回归,恢复了微分同构弹性位移向量场。我们的架构是基于RegNet网络的,但我们实现了一个强化的学习策略,可以容纳一个大的训练数据集。结果表明,在相同的epoch数下,我们的方法比RegNet方法具有更低的估计误差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On the Relevance of the Loss Function in the Agatston Score Regression from Non-ECG Gated CT Scans. Accurate Measurement of Airway Morphology on Chest CT Images. Diffeomorphic Lung Registration Using Deep CNNs and Reinforced Learning. A CT Scan Harmonization Technique to Detect Emphysema and Small Airway Diseases. Multi-structure Segmentation from Partially Labeled Datasets. Application to Body Composition Measurements on CT Scans.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1