Adeola Adeyemo, Christopher Johnson, Andrew Stiene, Kathleen LaSance, Zhihua Qi, Lisa Lemen, Jo El J Schultz
{"title":"Limb functional recovery is impaired in fibroblast growth factor-2 (FGF2) deficient mice despite chronic ischaemia-induced vascular growth.","authors":"Adeola Adeyemo, Christopher Johnson, Andrew Stiene, Kathleen LaSance, Zhihua Qi, Lisa Lemen, Jo El J Schultz","doi":"10.1080/08977194.2020.1767612","DOIUrl":null,"url":null,"abstract":"<p><p>FGF2 is a potent stimulator of vascular growth; however, even with a deficiency of FGF2 (<i>Fgf2-/-</i>), developmental vessel growth or ischaemia-induced revascularization still transpires. It remains to be elucidated as to what function, if any, FGF2 has during ischaemic injury. Wildtype (WT) or <i>Fgf2-/-</i> mice were subjected to hindlimb ischaemia for up to 42 days. Limb function, vascular growth, inflammatory- and angiogenesis-related proteins, and inflammatory cell infiltration were assessed in sham and ischaemic limbs at various timepoints. Recovery of ischaemic limb function was delayed in <i>Fgf2-/-</i> mice. Yet, vascular growth response to ischaemia was similar between WT and <i>Fgf2-/-</i> hindlimbs. Several angiogenesis- and inflammatory-related proteins (MCP-1, CXCL16, MMPs and PAI-1) were increased in <i>Fgf2-/-</i> ischaemic muscle. Neutrophil or monocyte recruitment/infiltration was elevated in <i>Fgf2-/-</i> ischaemic muscle. In summary, our study indicates that loss of FGF2 induces a pro-inflammatory microenvironment in skeletal muscle which exacerbates ischaemic injury and delays functional limb use.</p>","PeriodicalId":12782,"journal":{"name":"Growth factors","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2020-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/08977194.2020.1767612","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Growth factors","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/08977194.2020.1767612","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/6/4 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 2
Abstract
FGF2 is a potent stimulator of vascular growth; however, even with a deficiency of FGF2 (Fgf2-/-), developmental vessel growth or ischaemia-induced revascularization still transpires. It remains to be elucidated as to what function, if any, FGF2 has during ischaemic injury. Wildtype (WT) or Fgf2-/- mice were subjected to hindlimb ischaemia for up to 42 days. Limb function, vascular growth, inflammatory- and angiogenesis-related proteins, and inflammatory cell infiltration were assessed in sham and ischaemic limbs at various timepoints. Recovery of ischaemic limb function was delayed in Fgf2-/- mice. Yet, vascular growth response to ischaemia was similar between WT and Fgf2-/- hindlimbs. Several angiogenesis- and inflammatory-related proteins (MCP-1, CXCL16, MMPs and PAI-1) were increased in Fgf2-/- ischaemic muscle. Neutrophil or monocyte recruitment/infiltration was elevated in Fgf2-/- ischaemic muscle. In summary, our study indicates that loss of FGF2 induces a pro-inflammatory microenvironment in skeletal muscle which exacerbates ischaemic injury and delays functional limb use.
期刊介绍:
Growth Factors is an international and interdisciplinary vehicle publishing new knowledge and findings on the regulators of cell proliferation, differentiation and survival. The Journal will publish research papers, short communications and reviews on current developments in cell biology, biochemistry, physiology or pharmacology of growth factors, cytokines or hormones which improve our understanding of biology or medicine. Among the various fields of study topics of particular interest include: •Stem cell biology •Growth factor physiology •Structure-activity relationships •Drug development studies •Clinical applications