Impact of reduction in contact time activity of infected individuals on the dynamics and control of directly transmitted respiratory infections in SIR models.
{"title":"Impact of reduction in contact time activity of infected individuals on the dynamics and control of directly transmitted respiratory infections in SIR models.","authors":"Muntaser Safan","doi":"10.1186/s13662-020-02708-8","DOIUrl":null,"url":null,"abstract":"<p><p>This paper aims to study the impact of using an educational strategy on reducing the efforts needed to control respiratory transmitted infections represented by SIR models, taking into account heterogeneity in contacts between infected and non-infected individuals. Therefore, a new incidence function, in which the difference in contact time activity between infected and non-infected individuals is taken into account, is formulated. Equilibrium and stability analyses of the model have been carried out. The model has been extended to include the effect of herd immunity and the analysis showed that the higher the percent reduction <math> <msub><mover><mi>P</mi> <mo>ˆ</mo></mover> <mi>r</mi></msub> </math> in the contact-activity time of infected individuals is, the lower the critical vaccination coverage level <math><msub><mi>p</mi> <mi>c</mi></msub> </math> required to eliminate the infection is, and therefore, the lower the infection's minimum elimination effort is. Another extension of the basic model to include a control strategy based on treating infected individuals at rate <i>α</i> with a maximum capacity treatment <math><mi>I</mi></math> has been considered. The equilibrium analysis showed the existence of multiple subcritical and supercritical endemic equilibria, while the stability analysis showed that the model exhibits a Hopf bifurcation. Simulations showed that the higher the maximum treatment capacity <math><mi>I</mi></math> is, the lower the value of the critical reduction in infected individuals' time activity <math><msubsup><mi>P</mi> <mi>r</mi> <mo>⋆</mo></msubsup> </math> , at which a Hopf bifurcation is generated, is. Simulations with parameter values corresponding to the case of influenza A have been carried out.</p>","PeriodicalId":53311,"journal":{"name":"Advances in Difference Equations","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s13662-020-02708-8","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Difference Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1186/s13662-020-02708-8","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/5/27 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1
Abstract
This paper aims to study the impact of using an educational strategy on reducing the efforts needed to control respiratory transmitted infections represented by SIR models, taking into account heterogeneity in contacts between infected and non-infected individuals. Therefore, a new incidence function, in which the difference in contact time activity between infected and non-infected individuals is taken into account, is formulated. Equilibrium and stability analyses of the model have been carried out. The model has been extended to include the effect of herd immunity and the analysis showed that the higher the percent reduction in the contact-activity time of infected individuals is, the lower the critical vaccination coverage level required to eliminate the infection is, and therefore, the lower the infection's minimum elimination effort is. Another extension of the basic model to include a control strategy based on treating infected individuals at rate α with a maximum capacity treatment has been considered. The equilibrium analysis showed the existence of multiple subcritical and supercritical endemic equilibria, while the stability analysis showed that the model exhibits a Hopf bifurcation. Simulations showed that the higher the maximum treatment capacity is, the lower the value of the critical reduction in infected individuals' time activity , at which a Hopf bifurcation is generated, is. Simulations with parameter values corresponding to the case of influenza A have been carried out.
期刊介绍:
The theory of difference equations, the methods used, and their wide applications have advanced beyond their adolescent stage to occupy a central position in applicable analysis. In fact, in the last 15 years, the proliferation of the subject has been witnessed by hundreds of research articles, several monographs, many international conferences, and numerous special sessions.
The theory of differential and difference equations forms two extreme representations of real world problems. For example, a simple population model when represented as a differential equation shows the good behavior of solutions whereas the corresponding discrete analogue shows the chaotic behavior. The actual behavior of the population is somewhere in between.
The aim of Advances in Difference Equations is to report mainly the new developments in the field of difference equations, and their applications in all fields. We will also consider research articles emphasizing the qualitative behavior of solutions of ordinary, partial, delay, fractional, abstract, stochastic, fuzzy, and set-valued differential equations.
Advances in Difference Equations will accept high-quality articles containing original research results and survey articles of exceptional merit.