A Novel function of Nebivolol: Stimulation of Adipose-derived Stem Cell Proliferation and Inhibition of Differentiation.

IF 1.1 Q4 CELL & TISSUE ENGINEERING Journal of Stem Cells & Regenerative Medicine Pub Date : 2020-05-27 eCollection Date: 2020-01-01 DOI:10.46582/jsrm.1601003
Dong Lin, Joana E Ochoa, Zahra Barabadi, Andreas B Pfnur, Stephen E Braun, Reza Izadpanah, Eckhard Alt
{"title":"A Novel function of Nebivolol: Stimulation of Adipose-derived Stem Cell Proliferation and Inhibition of Differentiation.","authors":"Dong Lin,&nbsp;Joana E Ochoa,&nbsp;Zahra Barabadi,&nbsp;Andreas B Pfnur,&nbsp;Stephen E Braun,&nbsp;Reza Izadpanah,&nbsp;Eckhard Alt","doi":"10.46582/jsrm.1601003","DOIUrl":null,"url":null,"abstract":"<p><p>Tissue engineering is limited by the time of culture expansion of cells needed for scaffold seeding. Thus, a simple means of accelerated stem cell proliferation could represent a significant advance. Here, Nebivolol was investigated for its effect on the replicative capacity of adipose-derived stem cells (ASCs). This study indicates that the number of ASCs with Nebivolol treatment showed a significant population increase of 51.5% compared to untreated cells (p<0.01). Cell cycle analysis showed a significant decrease in the percentage of ASCs in G1 phase with Nebivolol treatment compared to untreated cells (p<0.01), suggesting that Nebivolol shortens the G1 phase of ASCs, resulting in a faster proliferative rate. Furthermore, our results showed that Nebivolol significantly increased colony-forming units of ASCs (p<0.01). Despite increasing ASC proliferative potential, we showed that Nebivolol has an inhibitory effect on adipogenic and osteogenic differentiation potential as indicated by significantly reduced expression of CCAAT Enhancer Binding Protein alpha (P<0.01) and lipoprotein lipase (P<0.01) and inhibited activity of alkaline phosphatase (P<0.01), respectively. Taken together, these results showed that Nebivolol accelerated ASC proliferation through shortening G1 phase, while inhibiting both adipogenic and osteogenic potentials of ASCs. These data identify a novel and simple approach to accelerate stem cell expansion <i>in vitro</i> before cell differentiation.</p>","PeriodicalId":17155,"journal":{"name":"Journal of Stem Cells & Regenerative Medicine","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2020-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7282272/pdf/jsrm_16_10.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Stem Cells & Regenerative Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46582/jsrm.1601003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/1/1 0:00:00","PubModel":"eCollection","JCR":"Q4","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Tissue engineering is limited by the time of culture expansion of cells needed for scaffold seeding. Thus, a simple means of accelerated stem cell proliferation could represent a significant advance. Here, Nebivolol was investigated for its effect on the replicative capacity of adipose-derived stem cells (ASCs). This study indicates that the number of ASCs with Nebivolol treatment showed a significant population increase of 51.5% compared to untreated cells (p<0.01). Cell cycle analysis showed a significant decrease in the percentage of ASCs in G1 phase with Nebivolol treatment compared to untreated cells (p<0.01), suggesting that Nebivolol shortens the G1 phase of ASCs, resulting in a faster proliferative rate. Furthermore, our results showed that Nebivolol significantly increased colony-forming units of ASCs (p<0.01). Despite increasing ASC proliferative potential, we showed that Nebivolol has an inhibitory effect on adipogenic and osteogenic differentiation potential as indicated by significantly reduced expression of CCAAT Enhancer Binding Protein alpha (P<0.01) and lipoprotein lipase (P<0.01) and inhibited activity of alkaline phosphatase (P<0.01), respectively. Taken together, these results showed that Nebivolol accelerated ASC proliferation through shortening G1 phase, while inhibiting both adipogenic and osteogenic potentials of ASCs. These data identify a novel and simple approach to accelerate stem cell expansion in vitro before cell differentiation.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
奈比洛尔的新功能:刺激脂肪来源的干细胞增殖和抑制分化。
组织工程受到支架播种所需细胞培养扩增时间的限制。因此,一种加速干细胞增殖的简单方法可能代表着一项重大进展。本研究研究了奈比洛尔对脂肪源性干细胞(ASCs)复制能力的影响。本研究表明,在细胞分化前,与未处理的细胞相比,奈比洛尔处理的ASCs数量显著增加了51.5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.40
自引率
0.00%
发文量
5
审稿时长
14 weeks
期刊最新文献
Amniotic Fluid Stem Cells and Their Secretomes as tools of regenerative medicine; Influence of Donor Characteristics on Standardization. MSC secretome from amniotic fluid halts IL-1β and TNF-α inflammation via the ERK/MAPK pathway, promoting cartilage regeneration in OA in vitro. The Therapeutic Potential of Human Umbilical Cord Mesenchymal Stromal Cells Derived Exosomes for Wound Healing: Harnessing Exosomes as a Cell-free Therapy. Cues from evolving insights about Cancer stem cells to tackle cancer metastases. I. Biomaterials for reconstruction of bone and cartilage defects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1