Computation Through Neural Population Dynamics.

IF 12.1 1区 医学 Q1 NEUROSCIENCES Annual review of neuroscience Pub Date : 2020-07-08 DOI:10.1146/annurev-neuro-092619-094115
Saurabh Vyas, Matthew D Golub, David Sussillo, Krishna V Shenoy
{"title":"Computation Through Neural Population Dynamics.","authors":"Saurabh Vyas,&nbsp;Matthew D Golub,&nbsp;David Sussillo,&nbsp;Krishna V Shenoy","doi":"10.1146/annurev-neuro-092619-094115","DOIUrl":null,"url":null,"abstract":"<p><p>Significant experimental, computational, and theoretical work has identified rich structure within the coordinated activity of interconnected neural populations. An emerging challenge now is to uncover the nature of the associated computations, how they are implemented, and what role they play in driving behavior. We term this computation through neural population dynamics. If successful, this framework will reveal general motifs of neural population activity and quantitatively describe how neural population dynamics implement computations necessary for driving goal-directed behavior. Here, we start with a mathematical primer on dynamical systems theory and analytical tools necessary to apply this perspective to experimental data. Next, we highlight some recent discoveries resulting from successful application of dynamical systems. We focus on studies spanning motor control, timing, decision-making, and working memory. Finally, we briefly discuss promising recent lines of investigation and future directions for the computation through neural population dynamics framework.</p>","PeriodicalId":8008,"journal":{"name":"Annual review of neuroscience","volume":"43 ","pages":"249-275"},"PeriodicalIF":12.1000,"publicationDate":"2020-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1146/annurev-neuro-092619-094115","citationCount":"291","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1146/annurev-neuro-092619-094115","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 291

Abstract

Significant experimental, computational, and theoretical work has identified rich structure within the coordinated activity of interconnected neural populations. An emerging challenge now is to uncover the nature of the associated computations, how they are implemented, and what role they play in driving behavior. We term this computation through neural population dynamics. If successful, this framework will reveal general motifs of neural population activity and quantitatively describe how neural population dynamics implement computations necessary for driving goal-directed behavior. Here, we start with a mathematical primer on dynamical systems theory and analytical tools necessary to apply this perspective to experimental data. Next, we highlight some recent discoveries resulting from successful application of dynamical systems. We focus on studies spanning motor control, timing, decision-making, and working memory. Finally, we briefly discuss promising recent lines of investigation and future directions for the computation through neural population dynamics framework.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于神经种群动力学的计算。
重要的实验、计算和理论工作已经确定了相互关联的神经群体协调活动中的丰富结构。现在出现的一个挑战是揭示相关计算的本质,它们是如何实现的,以及它们在驱动行为中扮演什么角色。我们将这种计算称为神经种群动力学。如果成功,该框架将揭示神经种群活动的一般动机,并定量描述神经种群动力学如何实现驱动目标导向行为所需的计算。在这里,我们从动力系统理论的数学入门和必要的分析工具开始,将这一观点应用于实验数据。接下来,我们重点介绍了动力系统成功应用的一些最新发现。我们专注于运动控制、计时、决策和工作记忆的研究。最后,我们简要讨论了通过神经种群动力学框架进行计算的最新研究方向和未来发展方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Annual review of neuroscience
Annual review of neuroscience 医学-神经科学
CiteScore
25.30
自引率
0.70%
发文量
29
期刊介绍: The Annual Review of Neuroscience is a well-established and comprehensive journal in the field of neuroscience, with a rich history and a commitment to open access and scholarly communication. The journal has been in publication since 1978, providing a long-standing source of authoritative reviews in neuroscience. The Annual Review of Neuroscience encompasses a wide range of topics within neuroscience, including but not limited to: Molecular and cellular neuroscience, Neurogenetics, Developmental neuroscience, Neural plasticity and repair, Systems neuroscience, Cognitive neuroscience, Behavioral neuroscience, Neurobiology of disease. Occasionally, the journal also features reviews on the history of neuroscience and ethical considerations within the field.
期刊最新文献
A Whole-Brain Topographic Ontology. Harmony in the Molecular Orchestra of Hearing: Developmental Mechanisms from the Ear to the Brain. Circuit-Specific Deep Brain Stimulation Provides Insights into Movement Control. Predictive Processing: A Circuit Approach to Psychosis. Neural Control of Naturalistic Behavior Choices.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1